نگاه کلی واژه کروموزم به مفهوم جسم رنگی ، که در سال 1888 بوسیله والدیر بکار گرفته شد.
هم اکنون این واژه برای نامیدن رشتههای رنگپذیر و قابل مشاهده با میکروسکوپهای نوری بکار میرود که از همانندسازی و نیز بهم پیچیدگی و تابیدگی هر رشته کروماتین اینترفازی در سلولهای یوکاریوتی تا رسیدن به ضخامت 1000 تا 1400 نانومتر ایجاد میشود.
در پروکاریوتها نیز ماده ژنتیکی اغلب به حالت یک کروموزوم متراکم میشود.
در برخی باکتریها علاوه بر کروموزوم اصلی که اغلب ژنها را شامل میشود کروموزوم کوچک دیگری که بطور معمول آن را پلاسمید مینامند، قابل تشخیص است گر چه تعداد کمی از ژنها بر روی پلاسمید قرار دارند.
اما از آنجا که در بیشتر موارد ژنهای مقاومت به آنتی بیوتیکها بر روی آن جایگزین شدهاند، از نظر پایداری و بقای نسل باکتری اهمیت زیادی دارد.
کروماتین در ساختمان کروموزوم به شکل لوپ دیده میشود.
لوپها توسط پروتئینهای اتصالی به DNA که مناطق خاصی از DNA را تشخیص میدهند پابرجا میماند.
سپس مراحل پیچ خوردگی نهایتا نوارهایی را که در کروموزومهای متافازی دیده میشود ایجاد میکند.
هر تیپ کروموزومی یک نوع نواربندی اختصاصی را در ارتباط با نوع رنگ آمیزی نشان میدهد.
این رنگ آمیزیها منجر به مشخص شدن تعداد و خصوصیات کروموزومهای هر گونه از موجودات زنده میگردد.
که این خصوصیات تعدادی و مورفولوژیک کروموزومها را کاریوتیپ مینامند.
رنگینتن از ویکیپدیا، دانشنامهٔ آزاد.
پرش به: ناوبری, جستجو به زبان ساده میتوان کروموزومها را به بستههای مواد ژنتیکی تشبیه کرد که درون هستهی سلولها ذخیره شدهاند.
و در واقع به شکل مولکولهای دیانای همراه با پروتئینها هستند که به این بستههارنگینتن یا کروموزوم گفته میشود.
پروتئین اصلی که در یوکاریوتها مسئول بستهبندی دیانای است هیستون نام دارد.
سلولهای یوکریوتی تعداد مشخصی کروموزوم دارند.
مثلاً سلولهای انسان دارای ۲۳ جفت کرووموزوم میباشد.
سلولهای انسان به جز تخمک و اسپرم به صورت دیپلوئید میباشند یعنی دارای ۲ سری از کروموزومهای همانند میباشند.
سلولهای تخمک و اسپرمها پلوئید هستند یعنی دارای یک سری از هر کروموزومند.
سلولهای پروکاریوتی (باکتریها) معمولاً دارای یک کروموزوم میباشند.
البته باکتریهایی هم هستند که دارای چند کروموزوم میباشند اما این باکتریها نادر هستند.
کروموزوم باکتریها به صورت حلقوی است.
باکتریها (و برخی مخمرها) علاوه بر کروموزوم اصلی دارای یک یا چند پلاسمید نیز میباشند.
انسان سالم دارای ۲۳ جفت رنگینتن است.
۲۲ جفت رنگینتن که تعیینکننده منش های ارثی به غیر از جنس (نر و ماده) است و خودتن (اتوزوم) نامیده میشود.
یک جفت دیگر را رنگینتن جنسی میگویند.
رنگینتنهای جنسی در مردان طبیعی به صورت XY و در زنان طبیعی XX است.
مراحل تبدیل رشته کروماتین به کروموزوم برای تبدیل یک رشته کروماتینی 10 تا 30 نانومتری به یک کروموزوم ، علاوه بر لزوم همانندسازی رشته کروماتین سطوح سازمان یافتگیای را در نظر میگیرند که ضمن آن با دخالت H3 ، H1 و پروتئینهای غیر هیستونی پیچیدگیها و تابیدگیهای رشته کروماتین افزایش مییابد، طول آن کم ، ضخامت و تراکمش زیاد میشود و به کروموزوم تبدیل میگردد.
این سطوح سازمان یافتگی و اغلب به صورت رسیدن از رشته 10 تا 30 نانومتری به رشته 90 تا 100 نانومتری تشکیل رشته 30 تا 400 نانومتری و در مراحل بعد با افزایش پیچیدگیها و تابیدگیها ، ایجاد رشته 700 نانومتری و بالاخره تشکیل کروموزوم دارای دو کروماتید و با ضخامت تا 1400 نانومتر در نظر میگیرند.
اولین مرحله پیچیدگی و تراکم رشته کروماتین برای تبدیل به کروموزوم با فسفریلاسیون شدید هیستون های H3 ، H1 همراه است.
پس از رها شدن DNA از اکتامر هیستونی ، با دخالت آنزیمهای مسئول همانندسازی ، پیوندهای هیدروژنی بین دو زنجیره گسسته میشود، هر زنجیره مکممل خود را میسازد و به تدریج با ادامه همانندسازی ، دو مولکول DNA بوجود میآید که در هر مولکول یک زنجیره قدیمی و زنجیره دیگر نوساخت است.
بخشهای مختلف این دو مولکول DNA که نظیر همدیگر هستند به تدریج که همانندسازیشان پایان میپذیرد، با اکتامرهای هیستونی که نیمی از آنها اکتامرهای والدی و نیمی جدید هستند ترکیب میشوند.
بعد از تشکیل ساختمان نوکلئوزومی ، دو رشته کروماتین 10 نانومتری و سپس رشتههای 30 نانومتری ایجاد میشوند.
هر رشته کروماتین 30 نانومتر سطوح سازمان یافتگی را میگذارند، با مجموعهای از پروتئینهای غیر هیستونی زمینهای یا اسکلتی آمیخته میشود و به یک کروماتید تبدیل میشود.
مجموعه دو کروماتید نظیر هم که از محل سانترومر بهم متصلاند کروموزوم متافازی را ایجاد میکنند.
کل اطلاعات ژنتیکی سلول در DNA قرار دارد که در هسته قرار گرفته است.
فضای درون هسته محدود است، پس باید برای جادادن میلیونها کد ژنتیکی در این فضا فکری کرد.
برای همین باید مولکول DNA را مرتب و بسته بندی کرد.
در ابتدا نوکلئوتید ها به صورت دو رشته خطی در کنار هم قرار میگیرند و یک مارپیچ دوتایی میسازند.
بعد از آن این مارپیچها به دور پروتئینهایی به نام "هیستون" پیچیده میشوند.
به هر واحد DNA که به دور یک مولکول هیستون پیچیده شده یک نوکلئوزوم میگوییم.
نوکلئوزومها هم توسط یک رشته بلند DNA به هم وصل میشوند.
برای اینکه DNA باز هم فشرده تر شود، نوکلئوزومها به هم فشرده میشوند و رشته های کروماتینی را به وجود میآورند.
بعد، رشته های کروماتینی با هم تا میخورند و یک شبکه پیچ پیچ به وجود میآورند.
هنگام تقسیم سلول این شبکهها به صورت ساختارهایی به نام "کروموزوم" در میآیند.
کروموزم در فرآیند پیر شدن و مرگ سلول هم نقش مهمی دارد.
در نوک کروموزوم ها، بخشهای کوچکی به نام تلومر قرار دارند.
وقتی DNA یک سلول صدمه میبیند، تلومرها کوتاه میشوند.
اگر تلومرها از حد مشخصی کوتاه تر شوند، سلول تصمیم میگیرد که دیگر خود را ترمیم نکند و فرآیند مرگ سلولی یا آپپتوسیس (Apoptosis) آغاز میشود.
امروزه بسیاری از دانشمندان مشغول تحقیق راجع به مکانیسم هایی هستند که تلومرها از طریق آنها باعث مرگ سلول میشوند.
اجزای ساختمانی کروموزوم در متافاز که کروموزومها سازمان یافتگی بیشتری دارند، برای هر کروموزوم بخشهای زیر در نظر گرفته میشود.
کروماتید کروماتید بخشی از کروموزوم متافازی است که نیمی از سراسر طول کروموزوم را میسازد.
دو کروماتید هر کروموزوم از ناحیه سانترومر بهم متصلاند.
هر کروماتید از ابر پیچیدگیهای رشته کروماتین و آمیختگی آن با پروتئینهای غیر هیستونی اسکلتی یا زمینهای بوجود آمده است.
دو کروماتید هر کروموزوم متافازی را که در حکم تصویر آینهای یکدیگر هستند، کروماتیدهای خواهر یا کروماتیدهای نظیر مینامند.
کروماتید بخشی از کروموزوم متافازی است که نیمی از سراسر طول کروموزوم را میسازد.
در پروفاز و گاهی در اینترفاز ، کروموزوم به صورت رشتههای بسیار نازکی است که آنها را کرومونما مینامند این رشتهها مراحل مقدماتی تراکم کروماتید را نشان میدهند.
کروماتید و کرومونما ، نامی برای مشخص کردن دو ساختمان یکسان اما با دو درجه سازمان یافتگی است.
کرومومر نیز از تجمع ماده کروماتینی به صورت دانههای کروی ایجاد میشود.
سانترومر محل اتصال دو کروماتید خواهر هر کروموزوم متافازی را سانترومر نامند.
سانترومر بخش نازکی از کروموزوم که جایگاه آنرا فرورفتگی اولیه نیز مینامند.
ناحیه سانترومر ناحیه بسیار هتروکروماتینی است و بویژه در بخشهای کناری خود دارای ژنها یا ترتیبهای نوکلوتیدی تکراری است.
این بخشهای هتروکروماتین با رنگهای بازی شدت رنگ میگیرند.
هر کروموزوم علاوه بر سانترومر اصلی ممکن است دارای سانترومر یا سانترومرهای فرعی در محل فشردگیهای ثانویه باشد.
فشردگیهای ثانویه با داشتن پیچیدگیهای کمتر از فشردگی اولیه قابل تشخیصاند.
کینه توکور طرفین سانترمر هر کروموزوم را دو بخش پروتئینی پیاله مانند و متراکم به اسم کینه توکور میپوشاند.
هر کینه توکور دارای سه بخش بیرونی و میانی و درونی است.
در ساختمان هر بخش پروتئینهای رشتهای با تراکم متفاوتی قابل تشخیص هستند بخش بیرونی متراکم و بخش میانی کم تراکم است.
بخش درونی بطور فشردهای با سانترومر اتصال دارد.
کینه توکورها از مراکز سازماندهی میکروتوبولها و رشتههای دوک میتوزی هستند.
تلومر این اصطلاح برای بخشهای انتهایی کروماتید بکار گرفته میشود.
تلومرها دارای ویژگیهای سلول شناسی خاصی هستند.
در مگس سرکه ترتیبهای DNAای تلومری که در انتهای همه کروموزومها وجود دارد جدا سازی و بررسی شده است.
تلومرها انتهاهای مولکولهای طویل و خطی DNAای هستند که در هر کروماتید وجود دارد.
از سوی دیگر وقتی کروموزومها بوسیله عواملی مثل پرتوهای X یا اثر آلکالوئیدها شکسته شوند، انتهاهای آزاد بدون تلومر آنها چسبنده میشود و با سایر کروموزومها ادغام میشود.
علاوه بر نقشی که تلومرها در پایداری کروموزومها دارند، در برخی گونهها به حالت مهیا و بعضی بین دو کروموزوم عمل کرده و نوک به نوک اتصال موقتی پیدا میکنند.
فرورفتگی ثانویه یکی دیگر از ویژگیهای ریخت شناسی کروموزومها هستند که از نظر موقعیت و فواصلشان بر حسب گونهها جای ثابتی دارند.
وجود آنها از نظر تشخیص کروموزومها بویژه در یک مجموعه کروموزومی مفید است فرورفتگیهای ثانویه به دلیل عدم ایجاد انحرافهای زاویهدار در قطعات کروموزومی از فرورفتگیهای اولیه شناخته میشوند.
سازمان دهندگان هستکی این نواحی فرورفتگیهای ثانویهای هستند که دارای ژنهای رمزدار کننده RNAهای ریبوزومی جز rRNA5S میباشند و در تشکیل هستک دخالت دارند.
پدیدار شدن فرورفتگی ثانویه به دلیل رونویسی بسیار فعال ژنهای rRNAای است که آنها را از فرورفتگیهای اولیه مشخص میسازد.
در انسان سازمان دهندگان هستکی در فرورفتگیهای ثانویه کروموزومهای 13 و 14 و 15 و 21 و22 قرار دارند که همه از کروموزمهای آکروسانتریک و دارای ماهواره هستند.
ماهواره جسم کوچکی کروی است که از بقیه کروموزوم بوسیله یک فرورفتگی ثانویه جدا میشود.
ماهواره و فرورفتگی ثانویه از نظر شکل و بزرگی برای هر کروموزوم ویژه ، ثابت هستند.
ماهوارههای کروموزومی بخشهایی از کروموزوم از دیدگاه ریخت شناسی هستند و نبایستی آنها را با ماهوارههای DNAای که دارای ترتیبهای DNAای بسیار تکراری میباشند اشتباه کرد.
انواع کروموزمها از نظر تعداد سانترومر کروموزومها را از نظر تعداد سانترومرهایشان به کروموزمهای یک سانترومری ، دو سانترومری و چند سانترومری تقسیم میکنند وقتی تحت تاثیر عواملی مثل پرتوهای X کروموزمها خرد شوند و قطعاتشان ادغام شود، کروموزومهای به اصطلاح بدون سانترومر ایجاد میکنند.
این کروموزومها هنگام تقسیم سلولی رفتار عادی مثل سایر کروموزومها را ندارند.
انواع کروموزوم از نظر محل سانترومر کروموزمهای تلوسانتریک: سانترومر در یکی از دو انتهای کروموزومها قرار گرفته است.
کروموزومهای آکروسانتریک: سانترومر آنها نزدیک به یکی از دو انتهای کروموزوم قرار گرفته در نتیجه یکی از بازوها نسبتا به دیگری بسیار کوچک است از قطعات کروموزومی از محل قرار گرفتن سانترومر از بازوهای کروموزومی مینامند.
کروموزمهای متاسانتریک: سانترومر آنها در وسط کروموزوم قرار گرفته و در نتیجه بازوهای کروموزم هم اندازه هستند اکثر کروموزمها دارای یک سانترومر هستند.
برخی گونهها سانترومرهای بخش شدهای دارند در رشتههای دوکی به تمامی طول کروموزوم متصلند این کروموزومها را هولوسانتریک گویند.
دید کلی پس از آنکه اسیدهای نوکلئیک بوجود آمدند، احتمال میرود که پیدایش جانداران جدید با سرعت بسیار زیادتری انجام گرفته باشد.
این شتاب عظیم را ژنها ، که القاب کنونی اسیدهای نوکلئیک هستند امکانپذیر ساختهاند.
اکنون جانداران بر طبق دستورالعملهایی که ژنهایشان فراهم میآورند، به تولید مثل میپردازند و به سبب اینکه نسلهای متوالی جانداران ، ژنها را به ارث میبرند.
پدید آمدن یک جاندار جدید به صورت فرایندی کنترل شده و غیر تصادفی درآمده است.
آنچه جاندار به ارث میبرد تا حد زیادی بقای او را تعیین میکند، بنابراین وراثت از نظر سازگاری جانداران حائز اهمیت است.
اما چیزی که جانداران به ارث میبرند، ماهیچه نیرومند ، برگ سبز ، خون قرمز یا مانند آن نیست، بلکه ژنها و دیگر محتویات سلولهای زاینده است.
سپس در فردی که از این سلولها ناشی میشود، صفات قابل رویت تحت نظارت ژنهایی که به ارث برده است، پدید میآید.
محصول این گونه وراثت موجود زنده منحصر به فردی است که در بعضی از صفات کلی خود به والدینش شباهت دارد و در بسیاری از صفات جزئی با آنها تفاوت دارد.
اگر این تفاوتها کشنده نباشند یا سبب عدم باروری نشوند، جاندار حاصل میتواند زنده بماند و ژنهای خود را به نسلهای بعدی انتقال دهد.
تاریخچه «ویلیام هاروی» ، در سال 1651 ، این نظریه را بیان کرد که تمام موجودات زنده از جمله ، انسان ، از تخم بوجود آمدهاند و اسپرم فقط فرایند تولید مثل نقش دارد.
هاروی همچنین تئوری اپیژنز را ارئه داد که طبق این تئوری در مرحله رشد جنینی ، ارگانها و ساختمانهای جدیدی از ماده زنده تمایز نیافته ، بوجود میآید.
پژوهشهای جدید درباره وراثت بوسیله گرگور مندل که کشیشی اتریشی بود، در نیمه دوم قرن 19 آغاز شد.
وی دو قانون مهم را کشف کرد که همه پیشرفتهای بعدی علم وراثت بر پایه آنها بنا نهاده شده است.
ژن به عنوان یک واحد عملکردی تمام نوکلئوتیدها در DNA ، گهگاه دستخوش دگرگونیهایی میشوند که جهش (Mutation) نام دارد.
پس از هر جهش ، ژن جهش یافته (Mutant) به جای ژن اولیه به سلولهای فرزند انتقال مییابد و به ارث برده میشود.
DNA جهش یافته ، آنگاه صفات تازهای بوجود میآورد که ارثی هستند.
ژنهایی که جز ژنهای ساختمانی هستند، مسئول ساختن زنجیرههای پلی پپتیدی هستند.
اگر جهشی در یکی از این ژنها ، روی دهد، مجموعه صفات و ویژگیهایی که ژن جهش یافته مسئول بخش کوچکی از آن میباشد، بطور مستقیم یا غیر مستقیم ، تحت تاثیر قرار خواهند گرفت و از آنجایی که بیشتر پروتئینها نقش آنزیمی بر عهده دارند، این جهش بر واکنشهایی که آنزیم مربوطه در آن دخالت دارد، اثر میگذارد.
ژنهای دیگر که نقش تنظیم کننده دارند، فعالیت ژنهای دیگری را کنترل میکنند و جهش در این ژنها بر کنترل ژنهای ساختمانی اثر میگذارد.
DNA هر موجود از تعدادی ژنهای مختلف تشکیل شده است.
در هنگام رشد ، هر ژن دقیقا ژن همانند خود را پدید میآورد.
هنگامی که یک ژن جهش مییابد، ژن جهش یافته در تقسیمات بعدی سلول ، ژنهای جهش یافته همانند خود را بوجود میآورد و اگر این ژن یک ژن ساختمانی باشد، جهش منجر به تولید پروتئین جهش یافته میگردد.
ژن جهش یافته و ژن اولیه نسبت بهم آللومورف (Allelomorph) نامیده میشوند.
ژن و کروموزوم یاختههای یک گیاه یا یک جانور دارای تعداد معینی کروموزوم است که ویژه آن گونه گیاهی یا جانوری میباشد و تعداد این کروموزومها در همه یاختههای آن فرد پایدار و یکسان است.
بنابراین همه یاختههای یک فرد دارای مجموعههای ژنی یکسانی میباشند، مثلا در مگس سرکه در حدود 10 هزار ژن شناخته شده است.
افراد مختلف یک گونه دارای آللهای متفاوت یک ژن در سلولهای خود میباشند.
در هر کروموزوم ، ژنها بطور خطی قرار گرفتهاند و نظام آنها پایدار و ثابت است.
جایگاه ثابت هر ژن در کروموزوم که ویژه آن ژن است، لوکوس (Locus) نامیده میشود.
دو ژن آلل نمیتوانند بطور همزمان در یک جایگاه وجود داشته باشند و در یک زمان هر جایگاه میتواند پذیرایی تنها یکی از ژنهای آلل باشد.
برخی از ژنها به ویژه ژنهایی که در ساختن RNA دخالت دارند، چندین بار در یک مجموعه کروموزومی تکرار میشوند.
در پدیده میتوز ، پیش از تقسیم هسته ، ژنها و در نتیجه کرومزومها، دو برابر شدهاند و هر یک از دو یاخته حاصل از تقسیم ، یکی از مجموعههای کروموزومی را دریافت میکند و از اینرو مجموعههای کروموزومی دو سلول دقیقا یکسان خواهد بود.
ژن و گوناگونی افراد در یاختههای بدنی گیاهان و جانوران کروموزومها به صورت جفت وجود دارند و از نظر ظاهری یکسان میباشند (به جز کروموزومهای جنسی).
در هر لنگه از یک جفت کروموزوم ، نظام جایگاههای ژنی ، همانند نظام جایگاههای لنگه دیگر میباشد و ژنهایی که در جایگاههایی همانند قرار دارند، ممکن است یکسان بوده و یا آلل یکدیگر باشند.
در حالت نخست فرد از نظر دو ژن هموزیگوت و در حالت دوم هتروزیگوت میباشد.
شماره کروموزومها در یاختههای حاصل از تقسیم میوز یا گامتها ، 2/1 تعداد کروموزومها در سلولهای پیکری است و در هر یک از گامتها ، تنها یک لنگه از یک جفت کروموزوم همانند ، در برخی از جایگاهها باهم متفاوت هستند.
در نتیجه گامتها نیز با هم متفاوت خواهند بود و چون توزیع کروموزومها در هر گامت از قانون احتمالات پیروی میکند، در نتیجه احتمال تولید گامتهای مختلف در صورتی که تعداد کروموزومها را در نظر بگیریم، خواهد بود.
این حالت ، تفکیک مستقل نامیده میشود.
تقاطع کروموزومی (Crossing-Over) نیز به ایجاد تفاوتهای بیشتر بین گامتها ، کمک میکند.
سازمان یابی و ساختمان ژن در سادهترین حالت ، یک ژن را میتوان به صورت قطعهای از یک مولکول DNA و حاوی رمز برای توالی اسید آمینهای یک رشته پلی پپتیدی و توالیهای تنظیم کننده لازم برای بروز آن در نظر گرفت.
به هر حال این توصیف برای ژنهای موجود در ژنوم انسان ، ناکافی است، زیرا تعداد ناچیزی ژن به صورت توالیهای رمزدار پیوسته وجود دارد.
بلکه در عوض در بین اکثریت ژنها ، یک یا بیش از یک ناحیه فاقد رمز موجود است.
این توالیهای حد فاصل که اینترون (intron) نامیده میشوند، ابتدا در هسته به RNA رونویسی میشوند، اما در RNA پیامبر بالغ در سیتوپلاسم وجود ندارند.
لذا اطلاعات توالیهای اینترونی ، بطور طبیعی در فرآورده پروتئینی نهائی نمایانده نمیشود.
اینترونها یک در میان با توالیهای رمزدار یا اگزون (exon) که نهایتا توالی اسید آمینهای پروتئین را رمز گردانی میکنند، قرار دارند.
اگرچه تعداد کمی از ژنها در ژنوم انسان فاقد اینترون میباشند، اکثر ژنها حداقل یک و معمولا چندین اینترون دارند.
ژن دیستروفین وابسته به جنس که حاوی 2 میلیون جفت باز است، کمتر از یک درصد آن حاوی اگزونهای رمزدار است.
اینترونها در ساختار ژنها ، نقش حفاظت از اگزونها را در برابر جهشها بر عهده دارند.
خصوصیات ساختمانی یک ژن معمولی انسان ژن نه تنها توالیهای رمزدار واقعی است، بلکه دارای توالیهای نوکلئوتیدی مجاور لازم برای بروز مناسب ژن ، یعنی برای تولید یک مولکول RNA پیامبر طبیعی ، به مقدار صحیح ، در محل درست و در زمان صحیح حین تکامل و یا در طی چرخه سلولی نیز میباشد.
توالیهای نوکلئوتیدی مجاور ، پیامهای مولکولی شروع و پایان را برای ساخت RNA پیامبر رونویسی شده از ژن فراهم میکنند.
ژن دارای دو انتهای به است.
در انتهای ژن ، یک ناحیه پیشبر وجود دارد که شامل توالیهای مسئول شروع مناسب رونویسی است.
پیشبرها و نیز عناصر تنظیم کننده میتوانند محلهایی برای جهش در بیماریهای ژنتیکی که قادرند مانع بروز طبیعی ژن شوند، باشند.
این عناصر تنظیم کننده شامل تقویت کنندهها ، خاموش کنندهها و نواحی کنترل کننده جایگاه ژنی هستند.
در انتهای ژن ، یک ناحیه ترجمه نشده مهم یافت میشود که حاوی پیامی برای اضافه شدن یک توالی از واحدهای آدنوزین به اصطلاح دم پلی A به انتهای RNA پیامبر بالغ است.
مبانی بروز ژن جریان اطلاعات از ژن به پلی پپتید ، شامل چندین مرحله است.
رونویسی یک ژن در محل شروع رونویسی روی RNA کروموزومی ، بلافاصله از توالیهای رمزدار آغاز میشود و در طول کروموزوم ادامه یافته، از چند صد جفت باز تا بیش از یک میلیون جفت باز و در هر دو گروه اینترونها و اگزونها و ناحیه بعد از پایان توالیهای رمزدار را رونویسی میکند.
پس از تغییر یافتن در هر دو انتهای و رونوشت اولیه RNA ، بخشهای مربوط به اینترونها برداشته میشوند و قطعات مربوط به اگزونها به یکدیگر چسبانده میشوند.
پس از برش و چسباندن RNA ، RNA پیامبر حاصل که اینک فقط حاوی بخشهای رمزدار ژن است، از هسته به سیتوپلاسم سلول برده میشود و در آنجا نهایتا به توالی اسید آمینهای پلی پپتید رمزگردانی شده ، ترجمه میگردد.
هر یک از این مراحل ، در معرض بروز خطا هستند و جهشهایی که در هر یک از این مراحل مداخله میکنند، در ایجاد تعدادی از اختلالات ژنتیکی دخیل دانسته شدهاند.