امروزه ماشین های الکتریکی نقش اساسی در صنعت ایفا می کنند و بنابراین به عنوان یکی از دروس مهم مهندسی برق در دانشگاه های دنیا مطرح می باشند.
متاسفانه بیشتر دانشجویان مهندسی برق به دلیل استفاده از فقط یک مرجع برای این درس و دید تک بعدی به ماشین های الکتریکی که همان دید مداری محض(KVL وKCL) است؛ همواره دارای ضعف اساسی در این درس می باشند.اولین ماشین های الکتریکی دوار که یک دانشجوی مهندسی برق با آنها آشنا می شود ماشین های DC هستند؛.
لذا زیر بنای فهم دانشجویان از اصول اساسی ماشین های الکتریکی گردان در همین نوع ماشین ها شکل می گیرد و چه بسا در صورت عدم فهم مناسب ماشین های DC ،دانشجو با سایر ماشین های دواری که بعداً با آنها مواجه می شود(نظیر موتور های القایی سه فاز،ژنراتور های سنکرون سه فاز،موتور های القایی تک فاز و ماشین های مخصوص)قطعاً دچار اشکال می گردد و نخواهد توانست دید مهندسی خوبی را نسبت به ماشین های الکتریکی ،پیدا کند.
متاسفانه بیشتر دانشجویان مهندسی برق به دلیل استفاده از فقط یک مرجع برای این درس و دید تک بعدی به ماشین های الکتریکی که همان دید مداری محض(KVL وKCL) است؛ همواره دارای ضعف اساسی در این درس می باشند.اولین ماشین های الکتریکی دوار که یک دانشجوی مهندسی برق با آنها آشنا می شود ماشین های DC هستند؛.
لذا زیر بنای فهم دانشجویان از اصول اساسی ماشین های الکتریکی گردان در همین نوع ماشین ها شکل می گیرد و چه بسا در صورت عدم فهم مناسب ماشین های DC ،دانشجو با سایر ماشین های دواری که بعداً با آنها مواجه می شود(نظیر موتور های القایی سه فاز،ژنراتور های سنکرون سه فاز،موتور های القایی تک فاز و ماشین های مخصوص)قطعاً دچار اشکال می گردد و نخواهد توانست دید مهندسی خوبی را نسبت به ماشین های الکتریکی ،پیدا کند.
من با توجه به مطالعه تعداد زیادی کتاب راجع به ماشین های الکتریکی و چند ترم تدریس این درس (به صورت TA در خدمت چند تن از اساتید محترم دانشکده برق دانشگاه صنعتی شریف) توانستم ضعف دانشجویان را در این درس ریشه یابی کنم ؛که همان طور در بالا اشاره شد نگاه یک چشمی به ماشین های الکتریکی به عنوان مدار های الکتریکی است.در حالی که می دانیم موتور ها و ژنراتور های الکتریکی به عنوان مبدل انرژی الکتریکی به مکانیکی و بالعکس هستند و این تبدیل انرژی تنها در سایه پدیده های الکترو مغناطیسی صورت خواهد گرفت.از همین بیان می توان نتیجه گرفت که روشی که ماشین های الکتریکی را مورد تجزیه و تحلیل قرار می دهیم ترکیبی از سه دیدگاه زیر است: 1)دیدگاه الکترومغناطیسی:محاسبات mmf و نیروهای الکترومغناطیسی و میدان های مغناطیسی.
2)دیدگاه مکانیکی:محاسبات گشتاور-سرعت و اعمال فرم زاویه ای قانون دوم نیوتن برای تجزیه و تحلیل حالت های گذرای ماشین های DC به صورت معادله دیفرانسیل معمولی رسته دوم 3)دیدگاه مداری:به دست آوردن مدار معادل الکتریکی ماشین های الکتریکی ومحاسبات ولتاژ و جریان پایانه ای ژنراتورها و جریانی که موتور از شبکه DC یاAC می کشدو مثلاً ضریب قدرت ورودی یک موتور AC که گفتیم این تنها دیدگاه دانشجویان نسبت به ماشین های الکتریکی است.
کتابی که پیش رو دارید در 8 فصل و از سه دیدگاه فوق به سبک استدلالی دقیق ماشین های DC را تجزیه و تحلیل می کند.
با توجه به این موضوع که گرایش اصلی من مخابرات میدان (الکترومغناطیس) می باشد لذا سعی کردم دیدگاه الکترومغناطیسی روشنی از ماشین های DC ارائه دهم این موضوع در سرتاسر این کتاب به چشم می خورد (مثلاً در فصل پنجم اثبات دقیق الکترومغناطیسی این حقیقت که توزیع mmf روتور یک ماشین DC یک شکل موج شبه مثلثی است آورده شده است که در هیچ یک از مراجع معتبر درس ماشین های الکتریکی مطرح نشده است).
مهم ترین نکته برجسته این کتاب زبان ساده به کار گرفته شده و تعدد شکل های واضح در آن است اما در عین حال سعی شده کلیه مطالب درسی مربوطه به طور کامل پوشش داده شوند.همچنین در این کتاب سیم پیچی موجی یک ژنراتور DC و شکل موج ولتاژ تولیدی آن در فصل سوم تجزیه و تحلیل شده که این مساله همیشه به عنوان یک مساله بی جواب در کلاس های درس دانشکده برق بین دانشجویان تیزبین مطرح بود و در هیچ یک از مراجع درس ماشین بدان اشاره ای نشده است(فقط به ذکر فرمول تعداد مسیر های موازی جریان برابر 2 است بسنده کرده اند).حال من به کمک نرم افزار Mechanical Desktop روتور 18 شیاری با سیم پیچی موجی را 5 درجه،5درجه چرخانده ام و ولتاژ پایانه ای آن را به صورت تابعی از زمان درآوردم.
ماشین های الکتریکی سازه های مرکبی هستند که از جهت انتقال حرارت پیچیده به نظر می رسند.
از سوی دیگر تحلیل حرارتی در بخشهای مختلف یک ماشین الکتریکی خصوصاً عایق های آن حائز اهمیت بسیار است زیرا افزایش درجه حرارت یکی از عوامل محدود کننده طراحی موتور است.
در این مقاله با استفاده از روشهای کلاسیک انتقال حرارت و تشابه حرارتی ، شبکه ، حرارتی یک الکتروموتور آسنکرون ترسیم و حل گردیده و با وجود منابع تلفات حرارتی موتور (تلفات مسی و آهنی) توزیع دما در مقاطع مختلف یک موتور الکتریکی بدست آمده است.
کنترلکننده سرعت موتور DC با توجه به استفاده روزافزون موتورهای DC در بخش صنعت و تحقیقات، کنترل دقیق و بهینه سرعت این موتورها امری ضروری است.
سامانه کنترل سرعت با داشتن کنترلکننده PID دیجیتال و با قابلیت تغییر پارامترهای کنترلی آن ابزار مناسبی در بخش تحقیقات و نیز استفاده در صنعت میباشد.
این سامانه میتواند به صورت خودکار منحنی غیر خطی ماشین را استخراج کرده و در کنترل سرعت بهکارگیرد.
ماشینهای الکتریکی جریان مستقیم وسایل تبدیل انرژی الکترومکانیکی گردان را ماشینهای الکتریکی می گویند.
طبقه بندی ماشینهای الکتریکی ماشینهای الکتریکی به دو طریق دسته بندی می شوند: از نظر نوع جریان الکتریکی الف- ماشینهای الکتریکی جریان مستقیم ب- ماشینهای الکتریکی جریان متناوب از نظر نوع تبدیل انرژی الف- مولدهای الکتریکی که انرژی مکانیکی را به انرژی الکتریکی تبدیل می کنند ب- موتورهای الکتریکی که انرژی الکتریکی را به انرژی مکانیکی تبدیل می کنند به طور کلی ماشینهای الکتریکی جزء وسایل تبدیل انرژی غیر خطی هستند یعنی هر تغییر در ورودی همیشه به یک نسبت در خروجی ظاهر نمی شود.
مولد ساده جریان مستقیم یک مولد ساده جریان مستقیم از چهار قسمت اصلی زیر تشکیل شده است 1- قطبهای مغناطیسی: که وظیفه ایجاد میدان مغناطیسی مولد را بعهده دارد و می تواند بصورت آهنربای دائم و یا آهنربای الکتریکی باشد 2- هادیها: برای ایجاد ولتاژ القایی به کار گرفته میشود 3- کموتاتور: در ساده ترین حالت از دو نیم استوانه مسی که توسط میکا نسبت به یکدیگر عایق شده اند تشکیل می گردد، وظیفه یک طرفه کردن ولتاژ و جریان القایی را در خارج از مولد بعهده دارد.
4- جاروبک: جهت انتقال جریان الکتریکی از هادیها به مصرف کننده استفاده میشود شکل زیر مولد ساده جریان مستقیم را نشان میدهد.
طرز کار مولد ساده جریان مستقیم: با حرکت هادیها در فضای ما بین قطبها باعث میشود میدان مغناطیسی توسط هادیها قطع میشود بدین ترتیب مطابق پدیده القاء در هادیها ولتاژ القاء میشود.ابتدا و انتهای هر کلاف به یک نیم استوانه مسی یا یک تیغه کوموتاتور وصل میشود روی تیغه های کوموتاتور دو عدد جاروبک بطور ثابت قرار داشته و با حرکت هادیها تیغه های کموتاتور زیر جاروبک می لغزند، بدین ترتیب در ژنراتورهای جریان مستقیم از طریق کوموتاتور ولتاژ القاء شده طوری به جاروبکها منتقل می شود که همیشه یکی از جاروبکها دارای پلاریته مثبت و دیگری دارای پلاریته منفی است.
شکل موج ولتاژ القاء شده در این مولد ساده بصورت زیر می باشد.
برای افزایش سطح ولتاژ القاء شده و بهبود یکسوسازی بمنظور داشتن ولتاژ با دامنه ثابت باید تعداد کلافها را افزایش داد و کلافها را به کمک تیغه های کوموتاتور سری کنیم.
چگونگی تغییر پلاریته ولتاژ القایی در مولد ساده در مولد جریان مستقیم تغییر پلاریته ولتاژ خروجی عملاٌ در صورت ایجاد یکی از دو حالت زیر ممکن می شود: 1- جهت چرخش آرمیچر عوض شود 2- جهت جریان در سیم پیچ قطبها تغییر کند در صورتیکه قطبها از نوع مغناطیس دائم نباشد چگونگی تغییر دامنه ولتاژ القایی در مولد ساده برای افزایش دامنه ولتاژ القا شده دو روش ممکن است: 1- افزایش سرعت چرخش آرمیچر که باعث افزایش ولتاژ بصورت خطی می شود 2- افزایش جریان تحریک که باعث افزایش ولتاژ مولد بصورت غیر خطی می شود موتور ساده جریان مستقیم موتور ساده از نظر ساختمانی مانند مولد ساده جریان مستقیم می باشد فقط نحوه کار آن با مولد ساده جریان مستقیم تفاوت دارد.
در موتور ساده هادیها از طریق کوموتاتور و جاروبکها به یک منبع جریان مستقیم متصل می شود در اینصورت جریانی از هادیها عبور کرده و در نتیجه مطابق نیروی لورنس به هادیها نیروی وارد میشود و آنها به حرکت در می آید.
نحوه ایجاد نیرو و گشتاور در موتور ساده: در صورتیکه از یک کلاف تک حلقه که بین قطبهای یک مغناطیس قرار دارد جریان الکتریکی عبور کند مطابق شکل به بازوی سمت راست نیروی به سمت بالا و به بازوی سمت چپ نیروی بسمت پایین وارد می شود با وارد شدن دو نیروی مختلف الجهت به دو طرف کلاف طبیعی است که کلاف حول محورش شروع به دوران خواهد نمود یعنی وارد آمدن زوج نیرو موجب ایجاد گشتاور لازم شده است.
در این موتور ساده اگر صفحه کلاف عمود بر خطوط میدان مغناطیسی قرار گیرد به آن گشتاوری وارد نمیشود در ضمن که گشتاور وارد شده نیز دامنه یکنواخت ندارد برای رفع شدن این معایب می بایست تعداد کلافها و تیغه های کوموتاتور را افزایش داد کلافها در زاویه های مختلف قرار می گیرد و با هم توسط تیغه های کوموتاتور سری می شود.
تغییر جهت گردش در موتور ساده DC: تغییر جهت گردش موتور ساده به دو روش زیر ممکن است: 1- تغییر جهت جریان در کلاف که با تغییر پلاریته ولتاژ منبع از خارج موتور میسر است 2- تغییر قطبهای مغناطیسی که با تغییر جهت جریان در سیم پیچی تحریک ممکن است ساختمان ماشینهای جریان مستقیم اجزاء تشکیل دهنده ماشینهای جریان مستقیم را میتوان به صورت زیر دسته بندی کرد: 1- قسمت ساکن شامل قطبها و بدنه 2- قسمت گردان (آرمیچر) 3- مجموعه جاروبک و جاروبک نگهدارها هر کدام از قسمتهای فوق بطور خلاصه توضیح داده می شود 1- اجزاء ساکن ماشینهای جریان مستقیم: قسمتهای ساکن جریان مستقیم شامل اجزاء زیر هستند: الف- قطبهای اصلی ب- قطبهای کمکی ج- بدنه - قطبهای اصلی: وظیفه این قسمت تامین میدان مغناطیسی مورد نیاز ماشین است.
قطبهای اصلی خود شامل قسمتهای زیر می باشد: - هسته قطب: از ورقهای فولاد الکتریکی به ضخامت حدود 5/0 تا 65/0 میلی متر با خاصیت مغناطیسی قابل قبول تشکیل می شود.
- کفشک قطب: شکل قطب به نحوی است که سطح مقطع کوچکتر برای سیم پیچ اختصاص داده می شود و قسمت بزرگتر که کفشک قطبی نام دارد سبب شکل دادن میدان مغناطیسی و سهولت هدایت فوران مغناطیسی به فاصله هوایی می شود.
- سیم پیچ تحریک: یا سیم پیچ قطب اصلی که دور هسته قطب پیچیده می شود، برای جریانهای کم باید تعداد دور سیم پیچ تحریک زیاد باشد و سطح مقطع آن کم و برا ی جریانهای زیاد تعداد دور کم برای سیم پیچ لازم است و با سطح مقطع زیاد - قطبهای کمکی: قطبهای کمکی در ماشینهای جریان مستقیم از هسته و سیم پیچ تشکیل می شوند، هسته قطبهای کمکی را معمولاٌ از فولاد یکپارچه می سازند.
سیم پیچی قطبهای کمکی نیز با تعداد دور کم و سطح مقطع زیاد پیچیده می شوند.
- بدنه: قطبهای اصلی، کمکی، جاروبک نگهدارها روی بدنه ماشین محکم می شوند و بوسیله ماشین روی پایه اش نصب می گردد.
قسمتی از بدنه را هسته آهنی تشکیل می دهد که برای هدایت فوران مغناطیسی قطبهای اصلی و کمکی بکار می رود این قسمت طوق بکار می رود.
شکلهای زیر قطب اصلی و کمکی ماشین جریان مستقیم را نشان میدهد.
2- قسمت گردان یا آرمیچر: در ماشینهای جریان مستقیم قسمت گردنده را القاء شوند یا آرمیچر می نامند که از اجزاء زیر تشکیل شده است: الف- هسته آرمیچر ب- سیم پیچی آرمیچر ج- کلکتور یا یکسوکننده مکانیکی د- محور ﻫ- پروانه خنک کننده - سیم پیچی آرمیچر: از کلافهای مشابهی تشکیل می شود که با الگوی مناسب تهیه و در شیارها قرار می گیرد سیم پیچی آرمیچر مبتنی بر اصول فنی بوده و از طراحی ماشینهای جریان مستقیم تبعیت می کند.
- کلکتور: از تیغه های مسی سخت که توسط میکا نسبت به یکدیگر و محور ماشین عایق شده اند تشکیل می شود.
- محور: محور آرمیچر ماشینهای جریان مستقیم باید از فولادی تهیه گردد که خاصیت مغناطیسی آن کم اما استحکام مکانیکی کافی در مقابل تنشهای برشی، کششی، و پیچشی را دارا باشد انتخاب کردن محور ضعیف خطر آفرین بوده و ممکن بوده در مواقع بروز خطا سبب انهدام کلی ماشین گردد.
- پروانه خنک کننده: پروانه خنک کننده سبب تهویه و ازدیاد عمر مفید ماشین میشود شکل زیر آرمیچر ماشین DC با پروانه خنک کننده را نشان میدهد.
3- جاروبک و جاروبک نگهدارها: وظیفه جاروبک نگهدار قرار دادن صحیح جاروبک روی تیغه های کلکتور است جاروبکها قطعاتی از جنس زغال یا گرافیت می باشند که برای گرفتن جریان از کلکتور یا دادن جریان به آن استفاده می شود.
سیم پیچی آرمیچر ماشینهای جریان مستقیم همانطور که قبلا اشاره شد سیم پیچی آرمیچر مبتنی بر اصول فنی خاص می باشد که در طراحی آن به نکات مهمی از قبیل استحکام مکانیکی، الکتریکی و حرارتی با عمر مفید و عادی حدود 20 سال حداکثر گشتاور و جریان و ولتاژ با حداقل نوسانه جرقه کم بین زغال و کلکتور و صرفه جویی در مواد اولیه باید توجه کرد.
بسته به نیاز کلافها می توانند بطور سری یا موازی یا ترکیبی از این دو به همدیگر وصل می شوند.
در صورتیکه کلافها با هم سری شوند نیرومحرکه کلافها با هم جمع می شوند و ولتاژ دهی آرمیچر افزایش می یابد.
(سیم پیچی موجی) در صورتیکه کلافها موازی شوند تعداد مسیرهای جریان موجود در آرمیچر افزایش یافته و قابلیت ولتاژ دهی آرمیچر افزایش می یابد.
(سیم پیچی حلقوی) توضیح کامل روشهای سیم پیچی آرمیچر در کتابهای سیم پیچی DC مطرح شده است و ما در این جزوه به مصرفی آن کفایت می کنیم.
الف- سیم پیچی حلقوب شامل حلقوی ساده و حلقوی مرکب ب- سیم پیچی موجی شامل موجی ساده و موجی مرکب ج- سیم پیچی پای قورباغه ای لازم است در اینجا تعداد مسیرهای جریان که در هر نوع ایجاد می شود نیز معرفی شود.
تعداد مسیرهای جریان را با 2a نشان میدهند که بشرح زیر است: 2a = 2P حلقوی ساده 2a = 2P.m حلقوی مرکب 2a = 2 موجی ساده 2a = 2m موجی مرکب 2P : تعداد قطبهای آرمیچر ، m : درجه مرکب بودن آرمیچر عکس العمل مغناطیسی آرمیچر: چنانچه ماشینهای جریان مستقیم زیر بار قرار گیرند یعنی از سیم پیچی آرمیچر جریان عبور کند یک میدان عکس العمل (عرضی) توسط آرمیچر ایجاد می گردد.
این میدان باعث می شود منطقه خنثی در مولدها در جهت چرخش و در موتورها در خلاف جهت چرخش تغییر مکان دهد.
عکس العمل آرمیچر علاوه بر انحراف محور خنثی سبب تضعیف میدان مغناطیسی اصلی می شود در نتیجه نیرو محرکه القاء شده در سیم پیچ کم شده، تلفات انرژی در ماشین و جرقه در زیر جاروبکها بوجود می آید برای از بین بردن و یا کم کردن اثر عکس العمل در ماشینهای جریان مستقیم می توان از قطبهای کمکی و یا در ماشینهای بزرگتر از سیم پیچی جبرانگر هم استفاده کرد.
پدیده کموتاسیون: تغییر تماس جاروبک از یک تیغه کموتاتور به تیغه دیگر کموتاسیون نام دارد در این جابجایی کلافی که تحت کموتاسیون قرار می گیرد چون توسط جاروبک اتصال شده باید در صفحه خنثی قرار گیرددر عین حال چون جریان در این کلاف در زمان کموتاسیون تغییر مقدار و جهت میدهد سبب بوجود آمدن ولتاژ خود القایی در این کلاف شده و از آنجا که این کلاف توسط جاربک و تیغه های کموتاتور اتصال کوتاه شده است جرقه نسبتاٌ شدید بین زغالها و کموتاتور بوجود می آید.
قطبهای کمکی برای رفع این عیب موثر خواهد بود.
اما در ماشینهای که قطب کمکی ندارند بهبود عمل کموتاسیون با تغییر محل جاروبکها (در جهت گردش در مولدها و در خلاف جهت گردش در موتورها) انجام گیرد.
این جابجایی درست کاملا امکان پذیر و قابل مشاهده می باشد.
شکلگیری نظامهای اطلاعاتی کارآمد از وجوه مشخصه انقلاب علمی - فنی در جوامعپیشرفته امروزی است.
با این حال دانش جدید را به هیچ وجه نمیتوان به انبوه اطلاعاتگردآوری شده در اشکال متنوع آن یعنی کتاب، نشریات و سامانههای نوین اطلاعاتی ازقبیل اینترنت یا کتب الکترونیکی، کاهش داد.
در حقیقت دانش، تنها به موضوع خاصیمحدود نمیشود بلکه شکلهای متنوع تفکر موجود نیز در گسترش آن موثر است بهنحویکه شناخت، نمیتواند بدون تفکر سازنده تنها بازتاب ساده واقعیت در شعور آدمیباشد.این تفکر سازنده، آفریننده اشکال مختلف فرایند شناخت است.
بنابراین نحوه صحیح برخورد با منابع اطلاعاتی خارجی، بیشک برخورد نقادانه با هدف باز تولیداطلاعات، نزد افراد است.
حجم عظیم اطلاعاتی که امروزه به دلیل انقلاب اطلاعاتی با ابعاد جهانی آن در اختیارما قرار گرفته، تنها در چارچوب روشهای صحیح علمی قابل استفاده است.
تلقی اینمجموعه اطلاعات به مثابه گنجینه فنا نشدنی از بستههای اطلاعاتی کاملا درست،برخوردی کاملا ساده اندیشانه با فرایند انتقال علم و فن آوری است.بر این اساس در این نوشتار به نقد و بررسی یکی از موارد مطرح تحت نام نقش مؤلفه صفر جریان در حفاظتدیفرانسیل ترانس خواهیم پرداخت.
پایداری حفاظت دیفرانسیل ترانس قدرت حفاظت دیفرانسیل ترانس قدرت در ردیفحفاظتهای کاملا انتخابی و سریع، یکی ازکارآمدترین حفاظتهای الکتریکی مرسوم درسیستمهای کنترل و حفاظت شبکههایالکتریکی است.
بهدلیل اهمیت این نوع حفاظت، تقریباتمام کتابها و منابع تخصصی، فصلی را بهاین موضوع اختصاص میدهند، با این حال کمتر منبعی را میتوان یافت که به تماممسائل فنی مرتبط با موضوع پرداخته باشد.
حتی گاهی پیش میآید که مطلب یک منبعمعتبر، حاوی یک لغزش غیر قابلچشمپوشی در این زمینه باشد.
برای روشنشدن مطلب بهطور خلاصه به این موضوعخواهیم پرداخت.
هر جا سخن از حفاظت موضعی است،خودبهخود بحث پایداری در قبال خطاهای خارج از ناحیه، مطرح میشود بهنحوی کهسمت و سوی انتخاب تجهیزات، فنآوریساخت قطعات، همچنین طرحهای حفاظتی مورد استفاده، عملا تحت الشعاع آن قرار میگیرد.
از آنجا که ترانس قدرت، یک مبدلالکترومغناطیسی با امکان تبادل انرژی دراشکال مختلف الکتریکی و مغناطیسیاست گاهی بعضی از مولفههای الکتریکی درانتقال از یک سو به سوی دیگر ترانس، تغییر شکل میدهند.
برای مثال در ترانسهایحاوی اتصالات مثلث، مولفه صفر جریانالکتریکی در سمت ستاره به واسطه میدانمغناطیسی هسته، قابل انتقال به سمت دیگرنیست.
در واقع مولفه صفر شار مغناطیسی حاصل از این جریان توسط جریانهایگردشی که عمدتا در مسیر سیم پیچی مثلثجاری میشود قبل از آنکه موفق به ایجاد نیروی محرکه الکتریکی لازم در ثانویه شود،خنثی میشود.
به این ترتیب با وجود تعادلالکترومغناطیسی در طرفین ترانس، تعادلجریانی بین اولیه و ثانویه، برقرار نخواهدشد.
این امر میتواند سبب عملکرد ناخواسته حفاظت دیفرانسیل ترانس شود،زیرا این حفاظت قادر به تشخیص تعادلالکترومغناطیسی در طرفین ترانس نیست.
راه حل مرسوم برای رفع این مشکل،استفاده از فیلترهای مولفه صفر و به طورکلی، حذف مولفه صفر جریان ازسیستم حفاظتی است.
هرچند این عملسبب کاهش حساسیت سیستم در قبالخطاهای فاز زمین داخل ناحیه حفاظتمیشود، اما مولفههای مثبت و منفی جریانخطا که همچنان طی خطاهای فاز به زمین،حضوری موثر دارند، میتوانند عملکردصحیح رله را تضمین کنند.
طرح پیشنهادیدر شکل نشان داده شده است.
آنچه موضوع اصلی بحث در ایننوشتاراست نقش نقاط الف و ب در طرحارایه شده و اختلاف پتانسیل ظاهر شده بینآنهاست.
تصور کنید حالتی را که سیستمبدون بهرهگیری از فیلتر مولفه صفر، مورداستفاده قرار میگیرد.
در این حالت چنانچه>نقاط الف موتور پلهای (Stepper motor) · استپ موتور نوعی موتور مثل موتورهای DC است که حرکت دورانی تولید می کند.
با این تفاوت که استپ موتورها دارای حرکت دقیق و حساب شده تری هستند.
· این موتورها به صورت درجه ای دوران می کنند و با درجه های مختلف در بازار موجود هستند.
· موتورهای پله ای موجود در بازار معمولا در دو نوع ۵ یا ۶ سیم یافت می شود.
· موتور دیسک سخت یک نمونه موتور پلهای است.
· کاربرد اصلی این موتورها در کنترل موقعیت است.
· این موتورها ساختار کنترلی سادهای دارند.
لذا در ساخت ربات کاربرد زیادی دارند.
بطوریکه به تعداد پالسهایی که به یکی از پایههای راه انداز آن ارسال میشود موتور به چپ یا راست میچرخد.
· توان خروجی این موتورها کمتر از دو نوع قبلی است.
· استفاده از موتور پلهای مشکلاتی از جمله وزن زیاد، قیمت بالا و قدرت بسیار کم را بدنبال دارد.
اصول کار موتور پلهای · واژه پله به معنی چرخش به اندازه درجه تعریف شده موتور است.
مثلاً موتور پلهای با درجه ۱.۸ باید ۲۰۰ پله حرکت کند تا ۳۶۰ درجه یا یک دور کامل بچرخ د: ۱.۸X۲۰۰ =۳۶۰ · یک استپ موتور با درجه ۱۵ فقط باید ۲۴ پله برای یک دور کامل انجام دهد : ۲۴X۱۵=۳۶۰ به این ترتیب هرچه تعداد پلههای یک موتور بیشتر باشد دقا چرخش آن افزایش مییابد.
· مکانیسم کنترلی موتور پله ای طوریست که امکان کنترل سرعت به سادگی میسر می شود.
موتور پله کامل و نیم پله · در حالت عادی میزان چرخش موتور به تعداد پالسهای اعمالی و گام موتور بستگی دارد.
هر پالس یک پله موتور را میچرخاند.
· با تحریک دو فاز مجاور در موتور میتوان موتور را به اندازه نیم پله حرکت داد.
به این ترتیب تعداد پلههای موتور دو برابر میشود و در نتیجه دقت چرخش موتور هم دوبرابر می گردد.
راه اندازی موتور پلهای · تراشه L297 یک راه انداز مناسب برای موتور پلهای است.
· مدارهای راهانداز متنوعی برای استفاده از موتورهای پلهای وجود دارد.
در اینجا از مدارمجتمع L297 و L298 برای راهاندازی موتور پلهای استفاده میشود.
که طریقه بستن آن در شکل زیر نشان داده شده است.
· جهت کنترل موتور به قابلیت هایی همچون حرکت به عقب و جلو، کنترل سرعت، کنترل جریان و توقف آنی موتور احتیاج داریم و این نیازها را درایور مورد نظر ما یعنی L298 براحتی تامین می نماید.
L298 یک آیسی پل-H دوتایی ( DUALH-Bridge) دارای ۱۵ پایه میباشد که قادر است وظایفی چون چرخش موتور به عقب و جلو، کنترل سرعت، کنترل جریان و توقف آنی موتور را انجام دهد.
کنترل موتور به این شرح است که پس از محاسبه میزان چرخش موتور برای جابجایی مورد نظر با استفاده از میکرو کنترلر به تعداد مورد نظر پالس به پایه راه انداز ارسال میکنیم.
· یک پایه برای تعیین جهت چرخش (ساعتگرد و پاد ساعتگرد) مورد استفاده قرار میگیرد.
· پایه Enableمدار راهانداز را فعال و غیر فعال مینماید.
مقایسه موتور DCو موتور پلهای · برای کسب اطلاعات بیشتر در مورد نحوه کارکرد انواع موتورها و دیگر مسایل مورد نیاز جهت ساخت ربات می توانید برنامه های آموزشی شبکه آموزش با عنوان "آموزش ساخت ربات" را که ویژه برگزاری همین مسابقات تولید شده است، دنبال کنید.