بسیار پیش می آید که دانش آموزان پس از تدریس یک درس ، از ما می پرسند که این درس که امروز خواندیم ،به چه درد ما می خورد؟و کجامی توانیم ازآن استفاده کنیم ؟
ریاضیات به عنوان یک درس اصلی است که داشتن درک درست از آن در آینده ی تحصیلی دانش آموزان و طبعاً پیشرفت علمی کشور نقش مهمی دارد .
همچنین شامل کلیه ارتباطات ریاضی با زندگی روزمرّه ، سایر علوم و کاربردهایی در زندگی علمی آینده ی دانش آموزاست .به این ترتیب دربرنامه درسی و آموزشی ، برقرار کردن پیوند ریاضیات با کاربردهایش در زندگی و سایر علوم از قبیل :هنر،علوم طبیعی ،علوم اجتماعی و .
.
باید مدّ نظر قرار گیرد .
در صورتی که این موارد در آموزش دیده نشود ، این سؤ ال همیشه در ذهن دانش آموز باقی می ماند که: « به چه دلیل باید ریاضی خواند ؟
» و « ریاضی به چه درد می خورد ؟
» دراین مقاله سعی شده است که ارتباط دروس کتب ریاضی راهنمایی با سایر علوم و همچنین کاربرد آنها در دنیای امروز ی تا حدودی بررسی شود و ارائه گردد .
مقدمه بین رشته های علمی ، که بشر در طول هزاران سال به وجود آورده ، ریاضیّات جای مخصوص و ضمناٌ مهمّی را اشغال کرده است .
ریاضیّات با علوم فیزیک ، زیست شناسی ، اقتصاد و فنون مختلف فرق دارد .
با وجود این به عنوان یکی از روشهای اصلی در بررسیهای مربوط به کامپیوتر ، فیزیک ، زیست شناسی ، صنعت واقتصاد بکار می رود ودرآینده بازهم نقش ریاضّیات گسترش بیشتری می یابد.
با وجود این مطلب ، برای آموزش جوانان هنوز از همان روشی استفاده می شود که سقراط و افلاطون ، حقایق عالی اخلاقی را برای شیفتگان منطق و فلسفه و برای علاقمندان سخنوری و علم کلام بیان می کردند .
در حقیقت در درسهای حساب ، هندسه و جبر ،هرگز لزوم یادگیری آنها برای زندگی عملی خاطر نشان نمی شود.
هرگز از تاریخ علم صحبتی به میان نمی آید.
نظریه های سنگین علمی ، ولی هیچ نتیجه ای جز این ندارد که دانش آموزان را از علم بری کند و عدّه ی آنها را تقلیل دهد .
یکی ازراههای جدی برای حلّ مسئله توجه به تاریخ علم، گفتگو در باره ی مردان علم و ارتباط ریاضی با عمل است ، ارتباطی که در تمام دوران زندگی بشر هرگز قطع نشده است .
کاربرد ارقام در زمانهای قدیم هر قدمی که در راه پیشرفت تمدّن برداشته می-شد، بر لزوم استفاده از اعداد می افزود .
اگر شخصی گله ای از گوسفندان داشت ، می خواست آن را بشمرد ،یا اگر می خواست معبد یا هرمی بسازد ، باید می دانست که چقدر سنگ برای آن لازم دارد .
اگر دارای زمین بود ، می خواست آن رااندازه گیری کند .
اگر قایقش را به دریا می راند ، می خواست فاصله ی خود را از ساحل بداند .
و بالاخره در تجارت و مبادله ی اجناس در بازارها ، باید ارزش اجناس حساب می شد.هنگامی که آدمی محاسبه با ارقام را آموخت ، توانست زمان ، فاصله مساحت ، حجم را اندازه گیری کند .
با بکار بردن ارقام ، انسان بردانش و تسلّط خود بر دنیای پیرامونش افزود .
کاربرد توابع و روابط بین اعداد کاربرد روابط بین اعداد و توابع و نتیجه گیریهای منطقی در نوشتن الگوریتمها و برنامه نویسی کامپیوتری است .
مفهوم تابع یکی از مهمترین مفاهیم ریاضی است و در اصل تابع نوعی خاص از رابطه های بین دو مجموعه است .
و با توجه به این که دنباله ها هم حالت خاصی از تابع است – تابعی که دامنه آن مجموعه ی اعداد { .
و 2 و 1 و 0 } است – دنباله های عددی در ریاضی و کامپیوتر کاربرد فراوان دارند .
برای ساخت یک برنامه اساساٌ چهار مرحله را طی می کنیم : 1- تعریف مسئله 2- طراحی حل 3- نوشتن برنامه 4- اجرای برنامه لازم به ذکر است که گردآیه هایی که در مرحله دوم حاصل می شود را اصطلاحاٌ الگوریتم می نامیم .که این الگوریتمهابه زبان شبه کد نوشته می شود ،که شبیه زبان برنامه نویسی است وتبدیل آنها به زبان برنامه نویسی را برای ما بسیار ساده می کند .
« هیچ دانسته ی بشر را نمی توان علم نامید، مگر اینکه از طریق ریاضیّات توضیح داده شده و ثابت شود .
» ( لئو ناردو داوینچی ) کاربرد معادله و دستگاه معادلات خطی دستگاه های معادلات خطی اغلب برای حساب کردن بهره ی ساده ،پیشگویی ، اقتصاد و پیدا کردن نقطه ی سر به سر به کارمیرود.
معمولاً هدف از حل کردن یک دستگاه معادلات خطی ، پیدا کردن محل تقاطع دو خط می باشد.در مسائل دخل و خرج که درمشاغل مختلف وجود دارد ، پیداکردن نقطه تقاطع معادلات خط یعنی همان پیدا کردن نقطه ی سر به سر.* در اقتصاد هم نقطه تقاطع معادلات خطی ، عبارتست از : قیمت بازار یا نقطه ای که در آن عرضه و تقاضا با هم برابر باشند.
کاربرد تقارنها (محوری و مرکزی ) و دَوَرانها مباحث تقارنها ودورانها که به تبدیلات هندسی معروف هستند،درصنعت و ساختن وسائل و لوازم زندگی استفاده می شوند .
مثلاً در بافتن قالی و برای دادن نقش و نگار به آن از تقارن استفاده می شود .
در کوزه گری و سفالگری از دوران محوری استفاده می - شود .
همچنین در معماریهای اسلامی اغلب از تقارنها کمک گرفته می شود .
چرخ گوشت ، آب میوه گیری ، پنکه ، ماشین تراش ُبادورانی که انجام می دهند ، تبدیل انرژی می کنند .
علاوه بر آن تبدیلات هندسی برای آموزش مطالبی از ریاضی استفاده می شوند ،مانند : مفهوم جمع و تفریق اعداد صحیح با استفاده از بردار انتقال موازی محور.
-------------------------------------------------------------------
ریاضیات نقش گسترده ای در زندگی آینده افراد داراست ، ریاضیات قادر است با اثر گذاری بر شخصیت انسان آنها را در برابر مشکلات آینده زندگی مقاوم تر کند.
مطالعه ریاضیات و تفکر در مسائل ریاضی انسان را خلاق و پویا کرده و قادر است از او شخصیتی بسازد که بهتر در مورد مسائل روزمره زندگی خود استلال و تفکر کند.
آیا ما به عنوان یک مدرس ریاضیات توانسته ایم این بعد ریاضی را به دانشآموزان خود آموزش دهیم ؟
آیا توانسته ایم به او بفهمانیم که میتواند فکر کند و او قادر است استدلال کند؟
گویا تنها تدریس ریاضیات شده است ارائه تعاریف ، مثالها و حل تمرینات موجود کتاب و ...
.
در ریاضیات دبیرستانی دانش آموز مایل است بداند که آنچه می خواند در کجای زندگی او کاربرد دارد ؟
آیا برای او پاسخی داریم؟
یا اینکه سؤال او و ما یکسان است !
چرا باید در کلاسهای خود به جبر ، ریاضی تدریس کنیم؟ چرا به جبر از آنها تمرین و پاسخ بخواهیم ؟
چرا او خود بدنبال یادگیری ریاضیات نیست و تنها این مائیم که با ترفندهای گوناگون او را مجبور به یادگیری و شاید حفظ کردن مفاهیم میکنیم.
چرا نباید متعلم داوطلبانه در فرایند یادگیری شرکت کند ؟
آیا راه کاری وجود دارد و یا راه کارها عملی هستند؟
در مقطع دبیرستان ، دانش آموز باید بر اهمیت ارتباط میان انتخابهای علمی و سایر انتخابهای دوران زندگی خود واقف شوند.
این مسئله حیاتی است که مربیان ریاضی بکوشند تا باور دانش آموزان را نسبت به ارزش دانش ریاضی و کارامدی آن در جامعه تقویت ؛ و آنان را متقاعد سازند که توان و ظرفیت انجام فعالیتهای ریاضی را در حال و آینده دارند و به گونه ای پیوسته اطلاعات به روز و قابل اعتمادی را در عرصه مقولات زیر فراهم آورند.
1 – چگونگی مرتبط ساختن آنچه دانش آموزان در ریاضی می آموزند با انتخابهای تحصیلی و شغلی آنان.
2 – افزایش فرصت هایی در زندگی دانش آموزان که در نتیجه مطالعات آینده در ریاضی برای آنان فراهم خواهد شد.
به عبارتی ، دوران دبیرستان میتواند فرصتهایی را برای تقویت و تثبیت مفاهیم و مهارتهای ریاضی دانش آموزان فراهم آورد که یادگیری های بعدی را در این عرصه ، به ویژه تحصیلات تخصصی دانشگاهی مرتبط با دانش و تجربه ، تسهیل سازد.
3 – چگونگی اتکا فزاینده سایر عرصه های علم و زندگی غیر ریاضیات و علوم
فیزیکی بر دانش ریاضی.
4 – لازمه فارغ التحصیلی فراگیر از دبیرستان ، یادگیری موفقیت آمیز بخشهایی از
ریاضی است.
5 – مشکلات مربوط به مرتبط ساختن ریاضیات متوسطه و دوران قبلی ، ریاضی
آموزش عالی و دنیای واقعی کار و حرفه است.
بنابراین همه کسانی که بگونه ای در امر تعلیم و تربیت ریاضی دخیل هستند، اعم از والدین ، مربیان و برنامه ریزان ، باید با یاری یکدیگر و هم اندیشی های سودمند بکوشند تا طرز تلقی ها ، ادراک و تصمیم سازی های فراگیران را در عرصه ریاضی شکل دهی و هدایت کنند.
از مهمترین هدفهای آموزشی ریاضی ، آن گونه که NCTM و سایر پژوهشگران اعلام کرده اند ، این است که
انجمن دبیران ریاضی ، جهت کسب اطلاع بیشتر به سایت اینترنتی www.nctm.org مراجعه نمایید..
دانش اندوزان بیاموزندکه برای ریاضیات ارزش قائل شوند و به کارایی آن در جریان زندگی و پرورش نیروی تفکر و استدلال و تحلیل واقف شوند.
به علاوه ، نسبت به قابلیتها و ظرفیتهای خویش در انجام تکلیفهای ریاضی و موقعیتهای مختلف حل مسئله اعتماد و اطمینان یابند تا جایی که کار و تلاش در ریاضی برای آنان همچون عملی رضایت بخش و مسرت آفرین درآید ، نه عملی اضطراب زا و ملالت بار !
دیدگاه نوین آموزش ریاضی بر این مهم تاکید دارد که انتقال منفعلانه مفاهیم و مهارتهای ریاضی توسط معلمان ، یادگیری معنادار را برای فراگیران به همراه ندارد و هرگز موجب رشد و پویایی تفکر ریاضی نخواهد شد ، بلکه این فراگیران هستند که با مشارکت فعالشان در عرصه آموزش و یادگیری ریاضی بر مبنای دانش و تجربههای پیشین خود ، ریاضیات را امری قابل فهم و لذت بخش می سازد .
تولید، تثبیت و تقویت تفکر ریاضی برای فراگیران هنگامی روی می دهد که با هدایت معلم تلاش کنند خود در ساختن مفاهیم ، مهارتهای جدید ریاضی و نیل به آنها مشارکت موثر داشته باشند.
به گفته نوربرت وینر : “ هنر ریاضیات ، هنر درک پرسشهای درست است و قطعه اصلی کار در ریاضیات تخیل است و آنچه این قطعه اصلی را به حرکت در می آورد ، منطق می باشد و امکان استدلال منطقی زمانی پدید می آید که ما پرسشهای خود را درست مطرح کرده باشیم.
“
این موضوع که چگونه فراگیران میتوانند دانش و تجربه های پیشین خود را در موقعیتهای جدید یادگیری به کار گیرند و با طرح پرسشهای مناسب در ساخت مفاهیم شرکت داشته باشد ، جای بحث و تالم بسیار دارد.
در قلمروی کار ریاضی ، متخصصان با طرح نظریه هایی به این مهم پرداخته اند.
این موضوع که چگونه فراگیران میتوانند دانش و تجربه های پیشین خود را در موقعیتهای جدید یادگیری به کار گیرند و با طرح پرسشهای مناسب در ساخت مفاهیم شرکت داشته باشد ، جای بحث و تالم بسیار دارد.
در قلمروی کار ریاضی ، متخصصان با طرح نظریه هایی به این مهم پرداخته اند.
اعجوبه آمریکایی که در سن هفده سالگی ار دانشگاه هاوارد دکترای ریاضی گرفت.
ما می توانیم با برگـزاری همایشها و بـرنامه های علمی و استفاده از تجارب اساتید دانشگاهی و متخصصان آموزش ریاضی و متبحران در علوم دیگر ( مانند علوم پایه ، علوم فنی و مهندسی و رشته ای علوم پزشکی و .
) این نظریات را بررسی کرد و بهترین راهکار را انتخاب کرده و در برنامه تدریس خود قرار دهیم.
چنانچه در بالا گفته شد دانش آموز نقش بیشتری در امر آموزش ریاضی دارد و معلم تنها هدایت و نظم دهی به فرایند یادگیری را بر عهده دارد از اینرو می توان ؛ در سطح پایین تری ( محیط دبیرستان یا مراکز آموزشی ) با دعوت از صاحبان مشاغل مختلف که از ریاضیات بطور مستقیم یا غیر مستقیم در حرفه خود استفاده میکنند ( مانند طراحان ، معماران ، مهندسان و متخصصان خط تولید کالا و .
) و حضور آنها در جمع دانش آموزان به این هدف تا اندکی دست یافت.
در این جلسات دانش آموز قادر است برای برخی از پرسشهای خود پاسخی بیابد و هر پاسخ قدمی او را به ریاضیات نزدیکتر می کند.
مولفان کتب ریاضی دبیرستانی نیز میتوانند با گنجاندن مفاهیم کاربردی ریاضی به موازات بیان مطالب درسی ، معلم را در رسیدن به اهداف مورد نظر ، یاری کنند.
دانش آموز ، کاربرد مطلب و مفهوم ریاضی را در یک امر عینی زندگی مشاهده میکند و او قادر است با این مثال عینی که خود آن را حل کرده است به آن مفهوم ریاضی نیز دست پیدا کند.
پیشنهـاد دیگری که در این راستا ارائه مــی شود تـالیف کـتـاب درسی با نام “کاربردهای ریاضی “ است که عمده مباحثی که باید در کتاب پیشنهادی به آن پرداخته شود عبارتند از: الف ) کاربرد ریاضی در فیزیک ب ) کاربرد ریاضی در شیمی ج ) کاربرد ریاضی در صنعت د ) کاربرد ریاضی در زندگی با پرداختن به مباحث فوق در کتاب پیشنهاد شده قادر خواهیم بود ، دانش آموز را اندکی متوجه ریاضیات و کاربرد ریاضیات کنیم و به او یاد دهیم که دیگر کاربردهای ریاضی را ، خود بیابد.
می توانیم به دانش آموز غیر مستقیم بگوییم که “ مسائل ریاضی تنها تمرینات کتاب ریاضی نیست ؛ بلکه تمام پیرامون تو پر از مسائل ریاضی است .
“ دانش آموز یاد می گیرد مسئله طرح کند و برای یافتن پاسخ ، فکر کند و با یافتن پاسخش ، لحظاتی را شاد بگذراند.
به هر حال چنانچه اطلاعات عرضه شده به فراگیران در درس ریاضی به صورت قطعه های خبری مجزا ، ناپیوسته و گاه غیر مرتبط با هم دیده شوند ، انتظاری برای چنین مشارکتی نمی توان داشت.
به علاوه باید متوجه باشیم که یادگیری در ریاضی با سرعتی یکسان و هماهنگ در دانش آموزان یک کلاس درس اتفاق نمیافتد.
از این رو ، یادگیری های انفعالی که به شتاب و به چگونگی یادگیری در افراد توجهی ندارد ، طبعا به بروز یادگیری های طوطی وار می انجامد.
از سوی دیگر ، بسیاری از مشکلاتی که در نگرش به آموزش و یادگیری ریاضیات اتفاق می افتد ، به واقع ناشی از برداشتهای غلط در مورد طبیعت ریاضیات است.
این مهم در ساختن باورهای فراگیر در عرصه کار و ریاضی تاثیری قابل تامل دارد.
معلمان و مدرسان درس ریاضی در کلاسهای درس خود همواره با دانش آموزانی مواجهند که در درک مفاهیم و تجزیه و تحلیل مسائل ریاضی مشکلات خاص خود را دارند ، و حتی گاهی آنان از دانستن ابتدایی ترین مفاهیم ریاضی نیز عاجزند.
همچنین یکسان نبودن سطح درک ریاضی در کلاسها موجب ایجاد روشی ابداعی و غیر علمی از جانب مدرس ریاضی می شود که شاید مشکلات دانش آموزان ضعیف را چند برابر کند و گاهی اوقات ضربه ای غیر قابل جبران ( جسمی ، روانی و .
) به دانش آموز مستعد درک ریاضی وارد کند.
این روشهای ابداعی ، تنها بر اساس شخصیت مدرس شکل میگیرد و همواره متناوب و بینظم است .
کلاس درسی که از چنین روشهای تدریسی استفاده می شود ، بازدهی خوبی نداشته و دانش آموزان حاظر در چنین کلاسی همواره با تنشهای روانی مواجهند.
روانشناسان علاقمند به آموزش ریاضی می کوشند تا دریابند چگونه عاملهای گوناگون بر تفکر و رفتار ریاضی فراگیران موثرند و این سؤال که ریاضی گونه اندیشیدن به چه معناست ، در مرکزیت این مطالعه قرار گرفته است.
چرا روانشناسان در فهم ما از اینکه مردم چگونه ریاضی را یاد می گیرند نقش فراوانی دارد؟
این پرسشی است که پاسخ آن هنوز برای بسیاری مبهم و ناشناخته است و به رغم برخی تلاشها در به کارگیری ابزار روان شناختی در تییین یادگیری و آموزش علوم از جمله ریاضیات ، می توان مدعی شد که هنوز اندکند کسانی که با نگرش روان شناختی در این عرصه تلاش می کنند.
عبارت روان شناسی یادگیری ریاضی نه تنها در میان مردم عادی ، بلکه در جمع معلمان و مربیان ریاضی ، به ویژه در جامعه ما ، چندان آشنایی نمی باشد.
به علاوه، آنچه دانشجویان به ویژه در رشته های دبیری از مباحث روان شناختی میآموزند غالبا همچون مفاهیم کلی و بی ارتباط با سایر شاخه های معرفت بشری از جمله علوم تجربی و ریاضیات برایشان جلوه گر می شود.
از اینرو ارتباطی معنادار بین دانسته های آنان در روان شناسی و تلاش در عرصه فراگیری ریاضی مشاهده نمی شود.
مثلا دنشجویان در درس روان شناسی تربیتی با نظریه های مختلف یادگیری آشنا می شوند در حالیکه کمترین اطلاعی از کاربرد این الگوها در یادگیری و آموزش ریاضی و تدوین برنامه های درسی ندارند و نمیدانند که این الگو ها چگونه می تواند رفتار فراگیران را پیش بینی کند.
با برگزاری کلاسهای آموزشی کوتاه مدت ، قادریم مدرسان ریاضی را در ارائه روشهای برتر تدریس یاری کرد و با بهره گیری از دانش روان شناسان ، فرایند آموزش ریاضی را در این کلاسها بررسی و با ارائه راه کارهای علمی از افت شدید دانش آموزان جلوگیری کنیم.
اسکمپ می گوید: یادگیری و آموزش ریاضی از مقوله های روان شناختی است و ما پیشرفت قابل ملاحظه ای در ریاضی نخواهیم داشت ، مگر اینکه بدانیم ریاضی چگونه یاد گرفته می شود نقطه ی سر به سر : در بسیاری از مشاغل ، هزینه ی تولید Cو تعداد X کالای تولید شده را می توان به صورت خطی بیان کرد.به همین ترتیب ، در آمد R حاصل از فروش X قلم کالای تولیدشده را نیز می توان با یک معادله ی خطی نشان داد .
وقتی هزینه ی C از در آمد R حاصل از فروش بیشتر باشد،این تولیدضررمی دهد.
و وقتی در آمد R از هزینه ی C بیشتر باشد ،تولید سودمیدهد .
و هر گاه در آمد R و هزینه ی C مساوی باشند ،سود و زیانی در بین نیست و نقطه ای که در آن R=C باشد، نقطه ی سربه سر نامیده می شود .
-------------------------------------------------------------------کاربرد مساحت مفهوم مساحت و تکنیک محاسبه مساحت اشکال مختلف ، از اهمّ مطالب هندسه است .به سبب کاربرد فراوانی که در زندگی روزمرّه مثلاً برای محاسبه ی مساحت زمینها با اَشکال مختلف .
و همچنین درفیزیک و جغرافیاوسایر دروس دانستن مساحتهالازم به نظرمی رسد .
کاربرد چهار ضلعیها شناخت چهارضلعیها و و دانستن خواص آنها ، برای یادگیری مفاهیم دیگر هندسه لازم است و ضمناً در صنعت و ساخت ابزار و وسائل زندگی و همچنین برای ادامه تحصیل وهمینطور در بازار کار نیاز به دانستن خواص چهارضلعیها احساس می شود .
کاربرد خطوط موازی و تشابهات از خطوط موازی و مخصوصاً متساوی الفاصله ، در نقشه کشی و ترسیمات استفاده می شود .و در اثبات احکامی نظیر قضیه تالس1 و عکس آن ، همچنین تقسیم پاره خط به قطعات متساوی یامتناسب .
تشابهات نیز از مفاهیم مهم هندسه و اساس نقشه برداری ،کوچک و بزرگ کردن نقشه ها و تصاویر و عکسها می باشد .
مبحث تشابهات درهندسه دریچه ای است به توانائیهای جدیدبرای درک و فهم و کشف مطالب تازه ی هندسه ،به همین سبب آموزش خطوطمتوازی و متساوی الفاصله و مثلثهای متشابه به حد نیاز دانش- آموز مقطع راهنمایی لازم است .
-------------------------------------------------------------------- 1 – تالس دانشمند یونانی نشان داد که به وسیله ی سایه ی یک شیء و مقایسه ی آن با سایه ی یک خط کش می توان ارتفاع آن شیء را اندازه گرفت .
با استفاده از اصولی که تالس ثابت کرد ،می توان بلندی هر چیزی را حساب کرد .
تنها چیزی که نیاز دارید ، یک وسیله ی ساده اندازه گیری است که می توانید[آن را ] از یک قطعه مقواو تکه ای چوب درست کنید.( مراجعه شودبه کتاب درجهان ریاضیات نوشته ی اریک او بلاکر – صفحه ی 30 ) تالس در زمان خود به کمک قضیه ی خودارتفاع اهرام مصررامحاسبه کرد همچنین وقتی از مصر به یونان بازگشت ، فاصله ی یک کشتی را از ساحل به کمک قضیه خود اندازه گرفت .روش دیگری هم برای محاسبه بلندی وجود دارد وآن استفاده از نسبتهای مثلثاتی است.
-------------------------------------------------------------------- کاربرد آمار و میانگین وقتی کسی از مقادیر عددی کمک می گیرد ، تا یک موقعیّت را توضیح دهد ، او وارد قلمرو آمار شده است .
آمار معمولاً اثر تعیین کننده ای دارد .
اگر چه ممکن است مفید یا گمراه کننده باشد .
ما عادت کرده ایم، که پدیده های زیادی نظیرموارد زیر را با توجه به آمار ، پیش بینی کنیم : احتمال پیروزی یک کاندیدای ریاست جمهوری،وضعیت اقتصادی(تورم،در آمد ناخالص ملی ، تعداد بیکاران ،کم وزیادشدن نرخ بهره هاونرخ سهام ، بازار بورس ، میزان بیمه ، آمار طوفان،جذر و مد) و غیره .
قلمرو آمار به طور مرتب درحال بزرگ شدن است.آمار می توانددر موارد زیادی ، برای قانع کردن مردم و یا انصراف آنهااز یک تصمیم موءثّر باشد .
به عنوان مثال : اگر افراداحساس کنند که رأی آنها نتیجه ی انتخابات را تغییر نخواهد داد ، ممکن است ازشرکت در انتخابات صرفنظر کنند .
در عصر ما آمار ابزار قوی و قانع کننده است،مردم به اعدادمنتشر شده ی حاصل از آمار گیری ،اعتماد زیادی نشان می دهند.
به نظر می رسد وقتی یک وضعیت وموقعیت باتوسل به مقادیر عددی توصیف می شود ، اعتبار گزارش در نظر مستمعین بالا می رود .
مقاطع مخروطی در هوای گرم بستنی بسیار خوشمزه ودلچسب است .بخصوص اگر بستنی قیفی داشته باشید ودر حالی که روی یک صندلی و در سایه درختی نشسته باشید و فارغ از جار و جنجال روزگار ، به خوردن بستنی مشغول باشید.
شاید همه چیز از ذهن شما بگذردمگرهمان بستنی قیفی که مشغول خوردن آن هستید .
این مطلب توجه یک ریاضیدان بلژیکی خوش ذوق رابه خودجلب کرد و آن رابرای توضیح یکی ازمطالب مهم ریاضی[یعنی مقاطع مخروطی]بکار برد .
واقعاً جالب است مگه نه ؟
مقاطع مخروطی یکی از مباحث مهم و کاربردی در ریاضیات بوده وهست .
ترسیمات هندسی در ترسیمات و آموزش قسمتهای دیگر هندسه، نیاز فراوان به شناخت دایره و اجزاو خواص آن پیدا می شود ، لذا در دوره ی راهنمایی ، مفهوم دایره ،وضع نقطه و خط نسبت به دایره،زاویه مرکزی ، زاویه محاطی و تقسیم دایره به کمانهای متساوی آموزش داده می شود و به این ترتیب دانش آموز برای یادگیری مطالب بعدی و استفاده ی عملی از آنها آماده می شود .
(همچنین من فکرمیکنم از زاویه ی محاطی و اندازه ی آن برای نورپردازی در سالنهااستفاده می شود .
) کاربرد ریاضیات در هنر و کامپیوتر تاریخ نشان می دهد که در طی قرون ، هنرمندان وآثارشان تحت تأثیرریاضیات قرار گرفته اند ،و زیبائی اثرشان به آگاهی آنها از این دانش بستگی داشته است .ماهم اکنون استفاده ی آگاهانه از مستطیل طلایی ، و نسبت طلایی را در هنر یونان باستان ، به ویژه درآثارپیکرتراش یونانی« فیدیاس »دقیقآ مشاهده می کنیم.
مفاهیم ریاضی از قبیل نسبتها ، تشابه، پرسپکتیو، خطای باصره تقارن ، اشکال هندسی ، حدود و بینهایت در آثار هنری موجوداز قدیم تا به امروز مکمل زیبایی آنها بوده است .
و اکنون نیز « کامپیوتر » به کمک ریاضیات هنر را ازابتدایی تامدرن توسعه می دهد.
اگر آگاهی هنرمندان باریاضیات واستفاده ی عملی از ان نبود،برخی از آثار هنری خلق نمی شدند .
بهترین نمونه ی آن تصاویر موزائیکی هنرمندن مسلمان وگسترش این شکلهای هندسی به وسیله ی « M.S.Esher » جهت نشان دادن اجسام متحرک است .اگر هنرمندان به مطالعات توجهی نداشتندوخصوصیات اشکال را از نظر تطابق،تقارن انعکاس ،دوران ، انتقال و .
کشف نکرده بودند ، خلق این همه آثار هنری امکان پذیر نبود .
« هنر ریاضیات ،هنرپرسیدنِِِ پرسشهای درست است وقطعه ی اصلی کار در ریاضیات تخیل است و آن چه که این قطعه ی اصلی رابه حرکت درمی آوردمنطق می باشدوامکان استدلال منطقی آن زمان پدید می آیدکه ما پرسشهای خود رادرست مطرح کرده باشیم.» (نوربرت ونیز ) کاربرد حجم به سبب نیازی که دانش آموز در زندگی روز مرّه و همین طور در بکار گیری آن در سایر علوم نظیر ، شیمی ، فیزیک ،زیست شناسی و مخصوصاً هنر برایش پیش می آید،همچنین در شغلهایی که در جامعه وجود دارد و یا در ادامه تحصیل دانستن دستورهای محاسبه ی حجماجسام ، یادگیری مبحث حجم ضروری به نظر می رسد .
کاربرد رابطه ی فیثاغورس فیثاغورث در باره ی رابطه های عددی که درساختمانهای هندسی وجود دارد تحقیق می کرد .
او مثلث معروف به مثلث مصری را ، که ضلعهای آن با عددهای 3و4و 5 بیان می شود ، را می شناخت .
مصریها می دانستند که چنین مثلثی قائم الزاویه است .و ازآن برای تعیین زاویه های قائمه در تجدید تقسیم بندی زمینهای اطراف نیل ،که هر سال بر اثر طغیان آب شسته می شد ، استفاده می کردند.
یکی از مشکلترین مسائل در ساختن اهرام و معبدها ،طرح شالوده بنا به شکل مربع کامل بود که هم تراز باسطح افق باشد .
جزئی اشتباه به قیمت از شکل افتادن همه ی بنا تمام می شد .
مصریان این مشکل رابا ساختن شاقول از میان برداشتند.
نخستین شاقول احتمالاً تکه ریسمان یا نخی بود که وزنه ای به آن آویخته بودند و ان را در برابر بنا می گرفتند تا وزنه ی آن به زمین صاف برسد .
در این حالت نخ می بایست کاملاً عمودیا شاقول باشد و زاویه ی بین آن و زمین صاف یک زاویه ی قائمه بسازد.
همچنین معماران کشف کردندکه چگونه می توان با ریسمان های اندازه گیری که درفاصله های مساوی گره خورده بودند، مثلثهای قائم الزاویه ای بسازند و این مثلثها را راهنمای خویش در ساختن گوشه ها ( نبش ها )ی بنا قرار دهند .
جمع بندی و نتیجه گیری بدون شک مهمترین هدف ما از بیان مطالب بالا این است که بتوانیم دانش آموزان را با اهداف کتب ریاضی آشنا کنیم و آنها را نسبت به ریاضیات علاقمند کنیم .
تجربه نشان داده است که حتی در رشته های فنی ، مانند خیاطی هم اهداف پرورشی ریاضی اهمیت دارند به همین خاطر دربرنامه ی درسی تمام رشته های تحصیلی درس ریاضی گنجانده شده است .
در کتب جدید ریاضی سعی شده است که مطالب طوری بیان شوند که دانش آموز نفهمیده مطلبی را نپذیرد.هر چند بعضی مطالب شهودی است.ولی دانش آموز از طریق درک مفاهیم درس یاد می گیرد و به تدریج با فرایندتفکر ریاضی آشنا می شود .معلمین هم باید به این نکته توجه داشته باشند و تصور نکنند که هدف آموزش ریاضی فقط در یاد دادن چند قاعده و حل ماشینی مسائل خلاصه می شود.
●ریاضی فیزیک ▪نگرش کلی: فیزیک علمی است که قوانین حاکم بر جهان طبیعت را بصورت مدون بیان می کند.
بنابراین برای ارائه این قوانین بصورت معادلات و روابط ریاضی ، لازم است که یک فیزیکدان باید با اصول و قوانین اساسی ریاضی آشنا باشد.
التبه در بعضی از علوم دیگر مانند شیمی نیز این ضرورت احساس می شود، ولی اغراق آمیز نیست بگوییم که ریاضیات بعنوان الفبای فیزیک می باشد.
این ضرورت سبب شده است که درسی تحت عنوان روشهای ریاضی در فیزیک ایجاد شود.
▪ضرورت با هم بودن ریاضی و فیزیک: اگر تاریخچه پیدایش علوم را مورد توجه قرار دهیم.
ملاحظه می گردد که فیزیک در ریاضی معمولا پا به پای هم گسترش و رشد یافته اند.
و اکثر فیزیکدانان قدیمی ، ریاضیدان نیز بوده اند.
بعنوان مثال به اسحاق نیوتن ، گالیله و دیگران اشاره کرد.
علاوه بر این هر مبحث فیزیک را مد نظر قرار دهیم، ملاحظه می کنیم که به نوعی دریایی از ریاضیات در آن وجود دارد.
به فرض اگر مبحث سینماتیک حرکت را مورد توجه قرار دهیم، خواهیم دید که اگر بخواهیم سرعت و یا شتاب را تعریف کنیم، بایستی با قوانین مشتقگیری آشنا باشیم تا بتوانیم بگوییم که مشتق مکان در هر لحظه برابر سرعت لحظه ای و مشتق سرعت در هر لحظه ، شتاب لحظه ای خواهد بود.
●اولین قدم در ریاضی فیزیک: اولین گام در مطالعه ریاضی فیزیک ، آشنایی با آنالیز برداری است.
چون مفاهیم برداری نقش اساسی را در فیزیک بازی می کند.
یعنی زمانی که یک کمیت فیزیکی را تعریف می کنیم، ابتدا باید به آنالیز برداری مراجعه کرده و تکلیف این کمیت را از لحاظ برداری ، اسکالر بودن مشخض کنیم، تا بعد بتوانیم خواص و ویژگیهای این کمیت را بیان کنیم.
●پایه های ریاضی فیزیک: آنالیز برداری دستگاههای مختصات جبر برداری جبر کلیدی جبر لی قضایای برداری قوانین تبدیل مختصات به یکدیگر جبر تانسوری دترمنیان ، ماتریس و نظریه گروه توابع مختلط توابع مختلط جبر توابع مختلط بسطهای توابع مختلف حساب ماندهها توابع خاص ●آینده ریاضی فیزیک: امروزه با پیشرفت علوم کامپیوتری که توانایی انجام محاسبات بسیار پیچیده ریاضی را در زمانهای بسیار کوتاه دارند، بیشتر فعالیتها در راستای استفاده هر چه بیشتر از رایانه برای حل معادلات ریاضی ، محاسبات طولانی ریاضی ، قرار دارد.
به عبارت دیگر پیشرفت علوم ریاضی بویژه ریاضی فیزیک با پیشرفت علوم کامپیوتری همسو شده است.
احتمال و آمار و همچنین سایر علوم رسالت دارند تا بتوانند حوادث پیرامون ما را توضیح دهند.
دلیل آنها را روشن سازند و رفتار آنها را تعیین کنند.
برای تبیین برخی از پدیده ها لازم است مباحث مختلفی از علوم دست به دست یکدیگر بدهند.
در ژنتیک با استفاده از مباحث زیست شناسی، احتمال و ریاضیات، پدیده ها را می توان توصیف و پیش بینی های لازم را به عمل آورد.
●احتمال و ژنتیک ▪وراثت و ژنتیک انسانها دارای صفتهای اکتسابی و ارثی هستند.
صفتهای ارثی؛ صفاتی هستند که از آغاز تولد همراه انسان بوده و تا آخر عمر ثابت می مانند.
این صفتها از والدین به او می رسند و او نیز آنها را به نسل و حتی نسلهای بعدی انتقال می دهد.
این انتقال به وسیله ژنها انجام می پذیرد.
برای هر صفتی ژن خاصی وجود دارد که نوزاد از والدین خود به ارث می برد.
برای آن که موضوع روشن شود؛ موضوع RH خون را در نظر می گیریم.
عامل تعیین کننده RH خون ژنی است که سبب می شود RH خون مثبت و یا منفی شود و هر ژن از دو قسمت تشکیل یافته است که یک قسمت آن از پدر و یک قسمت دیگر آن از مادر به نوزاد می رسد.
اکنون اگر این دو بخش، هر دو از نوع RH منفی باشند، گروه خونی نوزاد منفی خواهد بود و در غیر این صورت RH خون نوزاد مثبت خواهد شد.
در این گونه موارد، می گویند ژن RH مثبت غالب است (بر ژن RH منفی چیره می شود).
معمولاً ژن های را با حروف انگلیسی نشان می دهند.
اگر ژنی غالب باشد، آن را حرف بزرگ و اگر مغلوب باشد، با حرف کوچک نشان می دهند.
مثلاً اگر ژن تعیین کننده RH خون را با R نشان دهیم، آن گاه: R عامل تعیین کننده RH مثبت و تعیین کننده منفی RH است.
پس اگر ژن مربوط به تعیین RH خون فرزندی به یکی از صورتهای Rr، RR و r R باشد، RH خونی او مثبت خواهد شد.
فقط در حالت است که RH او منفی می شود.
حالت زیر را برای والدین در نظر بگیرید.