دانلود مقاله فناوری نانو چیست؟

Word 190 KB 22672 23
مشخص نشده مشخص نشده مهندسی مواد و متالورژی
قیمت قدیم:۱۶,۰۰۰ تومان
قیمت: ۱۲,۸۰۰ تومان
دانلود فایل
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • علم نانو و علوم مرتبط با آن جدید نیستند چرا که صدها سال است که شیمیدانان از تکنیک‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌هایی علم نانو در کار خود استفاده می‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌کنند که بی‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌شباهت به تنکنیک‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌های امروزی نانو نیست.

    پنجره های رنگارنگ کلیساهای قرون وسطی، شمشیرهای یافت شده در حفاری های سرزمین های مسلمان همگی گویای این مطلب هستند که بشر مدت هاست که از برخی شگردهای این فناوری در بهینه کردن فرایندها و ساخت باکیفیت تر اشیاء بهره می برده است اما تنها به دلیل پیشرفت کم فناوری و نبود امکانات امروزی مانند میکروسکوپ نیروی اتمی، میکروسکوپ تونلی پیمایشی و غیره نتوانسته حوزه مشخصی برای این فناوری تعیین کند.


    اولین بار ریچارد فیمن در سال 1959 طی سخنرانی خود با بیان امکان به راه اندازی فرایندی برای دستکاری اتمها و مولکولها با استفاده از ابزارهای دقیق سبب شده تا افکار به سمت توسعه چنین امکانی متمایل شوند.

    در سال 1974، پروفسور نوریو تانیگوشی، مدرس دانشگاه علوم توکیو، نخستین بار واژه "فناوری نانو" را بکار گرفت.

    او در مقاله ای با نام "مفهوم اساسی فناوری نانو" اشاره می کند که فناوری نانو اساسا مجموعه ای از فرایندهای تفکیک، ادغام و تشکیل مواد در حد یک اتم یا یک مولکول است.

    در دهه 1980 ایده یاین تعریف به طور وسیع تر توسط دکتر درکسلر (نویسنده کتاب های موتور خلقت) مورد بررسی قرار گرفت.


    فناوری نانو و نانوعلوم در اوایل دهه 1980 با تولد علم کلاستر و اختراع میکروسکوپ تونلی پیمایشی آغاز به کار کرد.

    این توسعه سبب کشف فلورین در سال 1986 و نانولوله های کربنی در مدت چند سال بعد شد.


    تحول دیگر این فناوری مربوط به ساخت نانوکریستالهای نیمه هادی بود که منجر به افزایش شدید تعداد نانوذرات اکسید فلزی نقاط کوانتوم گردید.

    میکروسکوپ نیروی اتمی 5 سال بعد از میکروسکوپ تونلی پیمایشی اختراع شد تا با کمک آن بتوان اتمها را بررسی کرد.


    فناوری نانو یک زمینه بین رشته ای است که در محدوده علوم کاربردی مختلفی نظیر فیزیک، مواد، الکترونیک و غیره وارد شده است.

    فناوری نانو خود به تنهایی علم نیست بلکه با استفاده از آن می توان به کاربردی کردن علوم مختلف کمک کرد.

    فناوری نانو به سه صورت تعریف می شود:
    1- فناوری نانو محدوده تحقیقات و مطالعه مواد و خصوصیات آنها در محدوده 1- 100 نانومتر را در بر می گیرد.


    2- با کمک فناوری نانو ساختارهای نانویی می توان خلق کرد که خصوصیات آنها با ساختارهای ماکروسکوپی همان مواد متفاوت است.


    3- با کمک فناوری نانو می توان در اتمها از طریق کنترل خصوصیات تغییراتی ایجاد کرد.


    زمانی که مواد در مقیاس نانو مطالعه و بررسی می شوند واکنش های و رفتار اتمها در مقایسه با حالتی که مطالعه در سطح مولکولی انجام می شوند کاملا متفاوت است چرا که در این قلمرو خصوصیات فیزیکی مواد تغییر می کند این درست مانند این است که در توپی را در محفظه ای بیندازید و توپی دیگری را از آن محفظه بیرون آورید.

    تفاوت در قلمرو نانو به اندازه ای است که حتی رنگ، نقطه ذوب، خصوصیات شیمیایی و غیره مواد در خارج از این محدوده کاملا متفاوت است.


    در فناوری نانو برای ساخت دو روش در نظر گرفته می شود: روش ساخت پایین به بالا و روش ساخت بالا به پایین.

    در روش ساخت پایین به بالا، وسایل و مواد از سطح مولکولی بر اساس اصول شیمی مولکولی ساخته می شوند درست مانند یک دیوار که از روی هم گذاشتن آجر به آجر ساخته می شود.


    در روش ساخت بالا به پایین، اشیاء نانویی بدون کنترل اتمی در مقادیر بزرگتر ساخته می شوند به این طریق که در ساخت آنها از تجهیزات پیشرفته این فناوری مانند میکروسکوپ اتمی و میکروسکوپ تونلی پیمایشی استفاده می شود تا فرایند دستکاری و ایجاد پدیده ها و خصوصیات جدید در اشیاء نانویی ظهور یابند.


    امروزه فناوری نانو در ساخت پلیمرهایی با ساختار مولکولی، طراحی تراشه های کامپیوتری کاربرد دارد.

    همچنین از این فناوری در ساخت مواد آرایشی، انواع پوشش ها و روکش های محافظتی و لباسهای مقاوم نیز استفاده می شود.


    نانو فناوری چیست فرض کنید که یک جعبه از آجرک‌های ساختمان سازی در اختیار دارید، مثل این: و می خواهید با آن یک دیوار به ارتفاع 10 سانتی متر بسازید.

    برای ساختن دیوار چند راه مختلف دارید: راه اول: می توانید آجرک‌ها را همین طوری روی هم بریزید تا یک پشته ده سانتی متری درست شود.

    دراین حالت دیوار شما کاملا بی نظم و غیر یکنواخت است.

    مثلا ضخامت دیوار در قسمتهای پایینی خیلی بیشتر از قسمتهای بالایی است.(تصویر شماره یک): تصویر شماره 1 راه دوم: ممکن است کمی حوصله به خرج دهید و آجرک‌ها را چندتا چندتا به هم وصل کنید.

    مثلا قطعاتی به اندازه جعبه کبریت بسازید و بعد این قطعات را همین طوری روی هم بریزید تا یک پشته 10 سانتی متری درست بشود، این بار هم دیوار شما بی نظم و غیر یکنواخت خواهد بود؛ اما به طور قطع از دیوار قبلی منظم تر و قدری هم خوش قیافه‌تر است.(تصویر شماره 2) تصویر شماره 2 راه سوم:اگر خیلی آدم صبور و باحوصله ای باشید، آجرک‌ها را دانه به دانه به هم متصل تا یک مستطیل به ارتفاع ده سانتی متر بسازید.

    این دیوار کاملا یکدست و منظم خواهد بود.

    به عنوان مثال اگر از وسط آن را بشکنید، هرکدام از نصفه دیوارها نظم اولیه خود را حفظ خواهد کرد.(تصویر شماره 3) تصویر شماره 3 حالا به تصویر شماره 4 نگاه کنید، به نظر شما این تصویر شبیه کدامیک از دیوارها است؟

    فکر می‌کنم در این مورد شما هم با من موافقید، بله!

    تصویر شماره 4 بیش از همه به دیوار دوم شبیه است.

    حتما می پرسید که تصویر شماره 4 چه چیزی را نشان می‌دهد؟

    باید بگویم که این تصویر، عکس واقعی سطح یک میله مسی کاملا صیقل داده شده در زیر میکروسکوپ است!

    اگر سطح یک فلز را خوب صیقل دهیم، بعد آن را به خوبی بشوییم، و سپس زیر میکروسکوپ بگذاریم چنین ساختاری را مشاهده خواهیم کرد.

    (البته نه به این وضوح!) به هرکدام از چندضلعی‌های تصویر، یک «دانه» می گوییم.

    هر دانه در واقع مجموعه ای از هزاران اتم فلز است که به طور منظمی کنار هم قرار گرفته اند.

    هرکدام از این اتمها قطری در حدود «یک نانومتر» یعنی یک میلیاردیم متر دارند.

    تصویر شماره 4 خوب، حال بگذارید که تشابه بین دیوارهای شما و سطح فلز را بررسی کنیم: آجرهای ساختمان سازی مانند اتم ها هستند و قطعات به اندازه جعبه کبریت در دیوار دوم هم مانند دانه ها.

    در واقع اتمهای درون یک دانه مانند آجرک‌های یک قطعه به هم متصل شده اند.

    اما دیوار سوم شبیه چیست؟

    از یک نظر می توان گفت که دیوار سوم شبیه یک تصویر بزرگ از درون یکی از دانه ها است.

    اما آیا در عمل می توانیم فلزی داشته باشیم که همه اتمهای آن مانند دیوار سوم به شکل منظم به هم متصل شده باشند؟

    یعنی همه سطح فلز یکدست باشد نه اینقدر تکه تکه ونامنظم؟

    باید دانست که تا چند سال پیش نه تنها هیچ فلزی، بلکه هیچ ماده مصنوعی هم وجود نداشت که در ابعاد بزرگ، حتی مثلا در ابعاد چند میلی متر در چند میلی متر، یکدست و منظم باشد.

    فکر می کنید چرا؟

    دلیلش این است که ما انسانها در بیشتر مواقع، وقتی می خواهیم یک جسم جدید بسازیم، آن را از روش ساختن دیوار اول درست می کنیم!

    شاید روش ساختن یک قطعه فلزی را در تلویزیون دیده و یا در کتابی خوانده باشید: "ابتدا فلز را ذوب می کنیم و بعد به وسیله ظرفهای مخصوصی فلزمذاب را درقالب قطعه مورد نظر می ریزیم." این کار دقیقا مانند ساختن دیوار به روش اول است؛ کاملا کیلویی!!!

    حتی همان دانه هایی هم که در تصویر 4 دیدید، به طورطبیعی و بدون دخالت انسان ایجاد می شوند و ما در اکثر روشهای معمولِ ساختنِ چیزها، توانایی نظم دادن و یا شکل دادن به اتمها در ابعاد کوچک را نداریم.

    البته باید به این نکته هم اشاره کرد که در بسیاری از کاربردها، به موادی شبیه به دیوار اول یا دوم نیاز داریم.

    برای مثال فلزات که ساختاری شبیه به دیوار دوم دارند (مثل مسی که عکسش را دیدید)، قابلیت چکش خواری و شکل پذیری بیشتری از خود نشان می دهند.

    اما در چند سال اخیر روشهایی ابداع شده اند که به ما اجازه می دهند که اتم ها و مولکول ها (آجرک ها) را به طور منظم وبه دلخواه خودمان به هم متصل کنیم.

    دانشمندان این روشهای جدید را «نانوفناوری» نامیده اند.

    به تصویر شماره 5 توجه کنید.

    تصویر شماره 5 شاید در ابتدا، شکل 5، تصویر یک میله توپر به نظر برسد، اما این میله که قطر آن درحدود 0.3 میلی متر است، از هزاران رشته ایستاده کربن تشکیل شده است که قطر هرکدام در حدود چند نانومتراست.

    این دسته رشته های منظم و یکسان برای اولین باردر حدود 10 سال پیش ساخته شدند و خواص و قابلیت های حیرت آور و متعددی دارند.

    شاید بپرسید که چرا این روشهای جدید را "نانوفناوری" نامیده اند؟

    جواب این است که در شیوه های فوق با ساختارهایی سروکار داریم که از تعداد کمی اتم و مولکول ساخته شده اند و اتمها و مولکولها هم ابعادی در حدود نانومتر دارند.

    همانطور که می دانید خواص مواد به نوع اتمهای تشکیل دهنده آنها و نوع اتصال این اتمها به یکدیگر بستگی دارد.

    بنابراین اگر بتوانیم این اتم ها را به شکل مورد نظر خودمان به هم متصل کنیم، مواد جدیدی با خواص و توانایی های مورد نظرمان، به دست آوریم؛ این کار، مهمترین هدف در نانوفناوری است.

    مثلا می توانیم ماده ای بسازیم که هم خیلی محکم باشد و هم خیلی سبک و یا ماده ای که در ابعاد بزرگ هم یکدست و منظم باشد.

    در این سایت مطالب مختلفی درباره نانوفناوری و کاربردهای آن خواهید یافت.

    سرگرمی ها و فعالیت های مختلفی هم خواهید دید که می توانید با انجام آن ها نانوفناوری را بهتر بشناسید.

    یادداشت: این مقاله با قدری تفاوت در مجله "کاوش، شماره دوم، آبان 1382" منتشر شده.

    انتشار مجدد آن با اجازه مجله کاوش انجام گرفته است.

    فناوری نانو چیست دیدگاه‌های ریچارد فاینمن، فیزیکدان برنده جایزه نوبل سال 1965، نقش بسزایی در پی‌ریزی علوم نانو داشته است.

    او دیدگاه‌های خود را در یک سخنرانی در انجمن فیزیک آمریکا با نام «در پایین‌دست فضای زیادی وجود دارد.» مطرح کرد (29 دسامبر 1959، برابر با 23 آذر 1338).

    در این سخنرانی پیش‌بینی‌های قابل توجهی مطرح شد که در زمان ما تحقق بسیاری از آنها مشهود است.

    متنی که می‌خوانید، ترجمه‌ای است از سخنرانی فاینمن و توضیحاتی که در مورد میزان تحقق آن پیش‌بینی‌ها داده شده‌اند.

    1.

    حوزه علوم نانو فاینمن: می‌خواهم حوزه‌ای را شرح دهم که هنوز جای کار زیادی دارد.

    این حوزه شبیه حوزه فیزیک ذرات بنیادی نیست، زیرا چیز زیادی در مورد اینکه ذرات بنیادی عجیب چه هستند نمی‌گوید.

    بلکه بیشتر شبیه فیزیک حالت جامد است، چون در مورد پدیده‌های عجیبی که در شرایط پیچیده اتفاق می‌افتند، اطلاعات جالبی می‌دهد.

    به علاوه، نکته‌ای که از همه مهمتر است، تعداد زیادِ کاربردهای تکنیکی این حوزه است.

    اشاره واقعیت این است که علوم نانو نگرشی بنیادی درباره جهان در مقیاس کوچک به ما نمی‌دهند.

    نگرش بنیادی، پدیده‌های عالم را با معادلات ریاضی واحدی توضیح می‌دهد.

    علوم نانو به مقیاس کوچک‌تر از اتم کاری ندارند.

    در عوض، در مورد ذرات بنیادی بسیار ریزتر ــ به کوچکی کوارک‌ها و لپتون‌ها که حداقل ده مرتبه کوچک‌تر از اتم هستند ــ فیزیک بنیادی دستاوردهای خوبی دارد.

    از سوی دیگر، علوم نانو نگرش متفاوتی در مورد ظهور پدیده‌های جدید می‌دهند.

    در این نگرش، از کنار هم گذاشتن تعدادی برهم‌کنشِ ساده بین اجزای تشکیل‌دهنده سیستم، خاصیت جدیدی در کلّ سیستم، متفاوت با خواص اجزای آن، بروز می‌کند؛ چیزی که در شبیه‌سازی‌های رایانه‌ای تا حدی مشاهده شده است.

    بنابراین، علوم نانو به ما نگرشی بنیادی در مورد پیشرفت‌های فناوری در آینده نزدیک می‌دهند.

    2.

    ساختن در مقیاس اتمی فاینمن: چیزی که می‌خواهم بگویم، مشکل تولید و کنترل اشیا در مقیاس کوچک است.

    به محض طرح این موضوع، مردم به من در مورد کوچک‌سازی و میزان پیشرفتِ آن تا امروز می‌گویند.

    آنها از موتورهای الکتریکی‌ای به کوچکی ناخن انگشت سخن می‌رانند.

    آنها می‌گویند وسیله‌ای وجود دارد که می‌تواند متن کتاب مقدس را در سر سوزن بنگارد.

    اما دنیای کوچک شگفت‌آورتری در پایین‌دست وجود دارد.

    در سال 2000، وقتی به روزگار ما نگاه کنند، با تعجب می‌پرسند چرا تا سال 1960 کسی به طور جدی به این سمت حرکت نکرده بود؟

    چرا ما نمی‌توانیم 24 جلد «دایره‌المعارف بریتانیکا» را در سر یک سوزن بنویسیم؟

    بگذارید ببینیم چه مسائلی دخیل هستند.

    پهنای سر سوزن یک میلی‌متر است.

    اگر آن را 25 هزار بار بزرگتر کنیم، سطح سر سوزن برابر با مساحت همه صفحات «بریتانیکا» می‌شود.

    بنابراین، تنها لازم است که اندازه‌های نوشته‌های دایره‌المعارف را 25 هزار بار کوچک کنیم.

    آیا چنین چیزی ممکن است؟

    قدرت تشخیص چشم انسان دو دهمِ میلی‌متر است که برابر با یکی از نقطه‌های کوچک دایره‌المعارف یادشده است.

    اگر آن را 25 هزار بار کوچک کنید، هنوز هشتاد انگسترم (هشت نانومتر) پهنا دارد، یعنی به پهنای 32 اتم در یک فلز معمولی.

    به زبان دیگر، یکی از آن نقاط هنوز هزار اتم در خود جای می‌دهد.

    بنابراین، هر نقطه می‌تواند در اندازه لازم برای چاپ تنظیم شود؛ دیگر شکی نیست که در سر سوزن فضای کافی برای قرار دادن «دایره‌المعارف بریتانیکا» موجود است.

    اشاره این کار در زمان حاضر امکان‌پذیر است.

    اگر سر سوزن از جنس سیلیکون و تخت باشد، با لیتوگرافی پرتوی الکترونی می‌توان نقوشی در این ابعاد و با این دقت ایجاد کرد.

    فاینمن: حال که «دایره‌المعارف بریتانیکا» روی سر سوزن جا شد، بیایید همه کتاب‌های عالم را در نظر بگیریم.

    کتابخانه کنگره حدود نُه میلیون جلد کتاب دارد، کتابخانه موزه بریتانیا پنج میلیون جلد و کتابخانه ملی فرانسه پنج میلیون جلد دیگر.

    مسلماً در میان اینها نسخه‌های تکراری هم وجود دارند.

    بنابراین، فرض کنیم 24 میلیون جلد کتابِ غیر تکراری در دنیا وجود دارند.

    کتابدار ما در کَلتِک (مرکز تحقیقاتی که فاینمن در آنجا تدریس و تحقیق می‌کرد) هر چه قدر تند و تیز باشد، بعد از ده سال فقط می‌تواند اطلاعات مربوط به 120 هزار جلد کتاب را توی کارت‌ها بنویسد.

    متن کتاب‌هایی که از کف تا سقفِ همه ساختمان کتابخانه چیده شده‌اند، و کارت‌هایی که همه کشوهای کتابخانه را انباشته‌اند، همه می‌توانند تنها در یک کارت نگه‌داری شوند.

    اشاره اگر فرض کنیم هر کتاب یک میلیون حرف دارد، 24 میلیون جلد کتابی که فاینمن می‌گوید، در فضایی معادل با 24 ترابایت ذخیره می‌شود.

    در چند سال آینده، یک آرایه از لوح‌های RAID گنجایش همه این اطلاعات را خواهد داشت.

    گرچه هنوز به اندازه یک کارت کتاب نیست، اما خیلی به آن نزدیک است.

    3.

    ارتباط بین فیزیک، شیمی و زیست‌شناسی فاینمن: بنابراین باید بتوانیم اتم‌های منفرد را ببینیم.

    اگر اتم‌ها را از هم جدا ببینیم، چه فایده‌ای دارد؟...

    ما دوستانی در رشته‌های دیگر داریم، مثلاً در زیست‌شناسی.

    ما فیزیکدان‌ها معمولاً به آنها نگاه می‌کنیم و می‌گوییم: «می دانید چرا همکاران شما این‌قدر کُند پیشرفت می‌کنند؟

    (در واقع، من رشته‌ای را نمی‌شناسم که در زمان ما رشدی به سرعت زیست‌شناسی داشته باشد) شما باید ریاضیات را بیشتر به کار ببرید، همان کاری که ما می‌کنیم.» آنها مؤدبانه پاسخ می‌دهند: «کاری که شما باید انجام دهید تا ما سریع‌تر پیشرفت کنیم، این است که میکروسکوپ الکترونی را صد مرتبه بهتر کنید.» اشاره میکروسکوپ‌های پیمایشیِ امروزی قدرت تشخیص پستی و بلندی‌هایی از مرتبه دهم انگستروم (صدم نانومتر) را دارند.

    یعنی فیزیکدان‌ها درخواستی را که زیست‌شناسان آن زمان از زبان فاینمن بیان کرده‌اند انجام داده‌اند.

    فاینمن: اصلی‌ترین مسائل در زیست‌شناسی امروز چه هستند؟

    سؤال‌هایی هستند مثل: ترتیب پایه‌های DNA چیست؟

    وقتی یک جهش ژنتیکی رخ دهد، چه اتفاقی می‌افتد؟

    ترتیب پایه‌ها در DNA چه ارتباطی با اسیدهای آمینه در پروتئین دارد؟

    ساختار RNA چیست؟

    یک‌زنجیره‌ای است یا دوزنجیره‌ای و چگونه در ترتیب پایه‌ها با DNA مرتبط می‌شود؟

    ساختار میکروزوم چیست؟

    پروتئین‌ها چطور سنتز می‌شوند؟

    RNA کجا می‌رود؟

    چگونه قرار می‌گیرد؟

    پروتئین‌ها کجا قرار می‌گیرند؟

    آمینواسیدها از کجا داخل می‌شوند؟

    در فتوسنتز، کلروفیل کجاست؟

    چگونه چیده شده است؟

    کاروتنویدها کجا در این فرآیند دخیل می‌شوند؟

    سیستم تبدیل نور به انرژی شیمیایی چیست؟

    پاسخ دادن به این سؤالات بنیادی زیست‌شناسی بسیار ساده است.

    کافی است به ساختارها نگاه کنید.

    می‌توانید ترتیب پایه‌ها را در زنجیره یا ترکیب میکروزوم را ببینید.

    متأسفانه میکروسکوپ‌ها در حال حاضر، مقیاسی را می‌بینند که بسیار زمخت است.

    میکروسکوپ را صد مرتبه بهتر کنید.

    در این صورت، بسیاری از مسائل زیست‌شناسی ساده‌تر می‌شوند.

    اشاره امروزه با استفاده از انبرک‌های لیزری می‌توان یک مولکول DNA را زیر میکروسکوپ نیروی اتمی ثابت و تصویرش را ثبت کرد.

    فاینمن: ...اگر فیزیکدان‌ها بخواهند، می‌توانند دشواری کار شیمیدان‌ها در مسائل تجزیه شیمیایی را حل کنند.

    تجزیه هر ترکیب پیچیده شیمیایی بسیار ساده است، فقط باید به آن نگاه کرد و دید اتم‌ها کجا هستند...

    یک سیستمِ زیستی می‌تواند بسیار کوچک باشد.

    سلول‌ها خیلی ریز، اما بسیار فعال‌اند.

    آنها ترکیبات مختلفی می‌سازند، حرکت می‌کنند، و همه جور اعمال شگفت‌انگیز انجام می‌دهند، همه در مقیاسی بسیار ریز.

    همچنین آنها اطلاعات ذخیره می‌کنند.

    امکانش را تصور کنید که ما هم بتوانیم چیزی بسیار کوچک بسازیم که آنچه ما می خواهیم انجام دهد یا به عبارت دیگر بتوانیم شیئی بسازیم که در آن ابعاد مانور دهد!

    اشاره امروزه نانوبیوتکنولوژیست‌ها تلاش می‌کنند تا با مهندسیِ سلول‌های جدید، فعالیت‌های این سلول‌ها را مطابق هدف مطلوبشان کنترل کنند.

    4.

    نانوماشین‌ها فاینمن: ...امکانات یک ماشین کوچک با قابلیت تحرک چیست؟

    آنها ممکن است به‌دردنخور باشند، اما مسلماً ساختن آنها مُفرّح است.

    من نمی‌دانم به طور عملی چطور در ابعاد ریز این کار را انجام دهم، اما می‌دانم که ماشین‌های محاسبه بسیار بزرگ هستند، آنها اتاق‌های متعدد را اشغال می‌کنند.

    چرا نمی‌توانیم آنها را خیلی کوچک بسازیم، آنها را از سیم‌های ریز بسازیم، از اجزای کوچک ــ و منظور من از کوچک این است که به عنوان مثال سیم‌ها 10 یا 100 اتم پهنا داشته باشند و مدارها در گستره چند انگستروم قرار گیرند.

    اشاره این شبیه همان مرحله‌ای است که فناوری سنتی سیلیکون امروزه در آن قرار دارد.

    روش‌های زیادی برای ساخت اجزای سنتی الکترونیک طراحی شده است.

    در عین حال، اصول جدیدی برای کار ماشین‌های محاسبه با افزایش کنترل انسان در ابعاد نانو پیشنهاد شده است.

    ترانزیستورهای مولکولی، ترانزیستورهای تک‌الکترونی و اسپینترونیک حوزه‌های جدیدی هستند که مورد مطالعه دانشمندان حوزه نانو قرار دارند.

    فاینمن: امکانات ماشین‌های کوچک اما متحرک چیست؟

    ...دوست من، آلبرت هیبس، امکان جالبی برای یک ماشین کوچک پیشنهاد می‌کند.

    او می‌گوید که اگرچه ایده بسیار خامی است، اما بسیار جالب است اگر بتوانی جراح را ببلعی.

    جراح مکانیکی را درون رگ قرار می‌دهی و او به داخل قلب می‌رود و اطراف را مشاهده می‌کند (مسلماً اطلاعات باید به خارج ارسال شوند).

    او پیدا می‌کند که کدام دریچه مشکل دارد و با یک چاقوی کوچک آن را جراحی می‌کند.

    بعضی ماشین‌های کوچکِ دیگر می‌توانند به طور دائم در بدن کار گذاشته شوند تا به اعضایی که نارسایی دارند، کمک کنند.

    اشاره ایده بدیع نانوماشین‌ها و کاربرد آنها در بدن انسان نخستین‌بار در سخنرانی فاینمن مطرح شد.

    هر چند هنوز هم دانشمندان نسبت به عملی بودن این ایده در آینده نزدیک مشکوک‌اند، اما بسیاری از تحلیلگران آینده آن را امکان‌پذیر می‌پندارند.

    در یک نانوروبوت، ابزارهایی برای حس کردن، پردازش اطلاعات، حرکت، ارسال اطلاعات به خارج و انجام عملیات خاص لازم است.

    دانشمندان موفق شده‌اند نمونه‌هایی از حسگرها، ردیاب‌ها و موتورهای بسیار کوچک شیمیایی را در ابعاد نانومتر ایجاد کنند، اما هر کدام از این عناصر نیاز به سیستم‌های پیچیده جانبی برای تکمیل عملکرد خود دارند، مثلاً برای مشاهده ردیاب‌ها نیاز به میکروسکوپ و برای تحلیل سیگنال حسگرها نیاز به سیستم‌های پردازنده ماکروسکوپیک وجود دارد.

    درست مانند یک کامپیوتر خانگی که هرچند پردازنده آن بسیار کوچک (در حدود چند میلی‌متر مربع) است، اما برای ایجاد کارایی نیاز به قطعات بزرگ جنبی دارد.

    امکان گنجاندن همه این ابزار در ابعادی کوچک‌تر از یک باکتری، به‌شدت مورد تردیدِ بسیاری از دانشمندان نانو است.

    فاینمن: اما من هراسی ندارم که سؤال آخرم را طرح کنم.

    آیا ــ در آینده بسیار دور ــ می‌توانیم اتم‌ها را آن‌جور که می‌خواهیم بچینیم؟

    خود اتم‌های بسیار ریز!

    چه اتفاقی می‌افتد اگر بتوانیم اتم‌ها را یکی‌یکی طوری بچینیم که می‌خواهیم؟

    اشاره این کار در حال حاضر، با استفاده از میکروسکوپ نیروی اتمی بر روی سطوح تخت ممکن است، در عین حال قدرت طراحی اجزای جدید با استفاده از کنترل خودآرایی مولکولی روز به روز در حال پیشرفت است.

    هرچند ایجاد ساختارهای دلخواه سه‌بُعدی در این روش‌ها و روش‌های مشابه محدود به چیدن لایه‌به‌لایه آنها می‌شود.

    به‌تازگی اَبَربلورهایی با لایه‌نشانی توسط لیزر ساخته شده‌اند که در واقع موادی مصنوعی به حساب می‌آیند که قبلاً وجود نداشته‌اند.

    در یکی از جدیدترین این دستاوردها، یک گروه هلندی با چیدن یک در میان لایه‌های اتمی از یک نارسانا و یک فلز ضعیف، موفق به مشاهده خاصیت ابررسانایی شده است.

    برای مطالعه بیشتر نشانی زیر را ببینید: http://www.ims.tnw.utwente.nl/news/lego.doc/ ریچارد فاینمن توانسته است به نحوی شگفت‌انگیز بیشتر حوزه‌های فعالیت دانشمندان امروزی علوم نانو را در سخنرانی خود معرفی کند.

    آن‌هم زمانی که هنوز فعالیت چشمگیری در این رشته شروع نشده بود.

    او این کار را به دور از توهّم‌سازی و کاملاً حساب‌شده انجام داد.

    امروز به‌خوبی می‌دانیم اهدافی که او 45 سال پیش مطرح کرد، یا به دست آمده‌اند یا در آینده نزدیک به وقوع خواهند پیوست.

    اینها همه نشان از پختگی و شهود قوی این فیزیکدان برجسته و رهبر علمی دارد.

    http://www.nanoclub.ir/ عنوان اسپینترونیک از تشابه این حوزه با رقیب (یا همکار) سنتی خود یعنی الکترونیک ریشه گرفته است.

    در شیمی خوانده‌ایم که الکترون‌ها و برخی دیگر از ذرات بنیادی به غیر از بار الکتریکی و جرم، خاصیت دیگری به نام اسپین هم دارند که یکی از خواص ذاتی الکترون به حساب می‌آید و دو مقدار مثبت یا منفی یک‌دوم به آن نسبت داده می‌شود.

    جریان الکتریکی، پتانسیل الکتریکی و میدان الکتریکی (که از روابط ماکسول پیروی می‌کنند) ابزار اصلی در تحلیل یک مدار الکترونیکی هستند و بیشتر با «بار الکترون» سر و کار دارند.

    محققان اسپینترونیک تلاش می‌کنند تا با استفاده از قواعد حاکم بر برهمکنش و تغییرات «اسپین الکترون» روش‌های جدیدی برای ساخت سیستم‌هایی معادل با مدارهای الکترونیکی به‌خصوص برای محاسبه و ذخیره اطلاعات بیابند.

    ریچارد فاینمن (11 می 1918 تا 15 فوریه 1988) یکی از تأثیرگذارترین فیزیکدانان آمریکایی در قرن بیستم بود که نظریه الکترودینامیک کوانتومی را پیش برد.

    او سخنرانی برجسته و نوازنده‌ای غیرحرفه‌ای بود.

    فاینمن به خاطر کارهایش بر روی نظریه الکترودینامیک کوانتومی، جایزه نوبل فیزیک را در سال 1965 به همراه جولیان شوینگر و شین ایچیرو توموناگا از آنِ خود کرد.

    سخنرانی او را هنگام دریافت جایزه نوبل می توانید بخوانید.

    سه جلد کتاب فیزیک پایه با عنوان «سخنرانی‌های فاینمن درمورد فیزیک عمومی» بر اساس یک دوره آموزش درس فیزیک پایه در دوره کارشناسی توسط وی تهیه شده‌اند که شاید بتوان گفت به اندازه جایزه نوبل‌اش، مایه شهرت فاینمن بوده‌اند.

نانو تکنولوژی علم خواص عجیب مواد از نانوتکنولوژی، بیوتکنولوژی و فناوری اطلاع رسانی به عنوان سه قلمرو علمی نام می برند که انقلاب سوم صنعتی را شکل می دهد. از همین روست که کشورهای در حال توسعه که اغلب از دو انقلاب قبل جا مانده اند، می کوشند با سرمایه گذاری در این سه قلمرو، عقب ماندگی خود را جبران کنند. همان گونه که در این گزارش می خوانید، نانوتکنولوژی کاربردهای گسترده ای در تمام ...

نانو تکنولوژی ، فناوری نوین نانوتکنولوژی فناوری جدیدی است که تمام دنیا را فراگرفته است و به تعبیر دقیق تر" نانو تکنولوژی بخشی از آینده نیست بلکه همه آینده است ". در این مقاله بعد از تعریف نانو به بیان دلایل کاربرد ها و ضرورت های توجه به این فناوری اشاره شده است. تعریف نانو تکنولوژی نانو تکنولوژی ، توانمندی تولید مواد ، ابزار ها و سیستم های جدید با در دست گرفتن کنترل در ...

نانوتکنولوژی، فناوری جدید است که تمام دنیا را فرا گرفته است و به تعبیر دقیقتر "نانوتکنولوژی بخشی از آینده نیست بکله همه آینده است" . در این نوشتار بعد از تعریف نانوتکنولوژی و بیان کاربردهای آن دلایل و ضرورتهای توجه به این فناوری آورده شده است: تعریف نانوتکنولوژی و آشنایی با آن نانوتکنولوژی، توانمندی تولید مواد، ابزارها و سیستمهای جدید با در دست گرفتن کنترل در سطوح ملکولی و اتمی ...

پروژه کارشناسی مقدمه               نانوتکنولوژی یا به عبارتی فناوری مادون ریز در دو دهه اخیر پیشرفتهایی را در تکنولوژی وسایل و مواد با ابعاد بسیار کوچک به دست آورده است و به سوی تحولی فوق العاده که تمدن بشری را تا پایان این قرن دگرگون خواهد کرد، پیش می رود.        ...

از اهداف مهم فناوری نانو و شاید مهم‌ترین آنها به وجود آوردن ساختارهایی از مواد است که در آنها آرایش مولکول‌ها از پیش طراحی شده باشد. روش‌های مرسوم تولید، مثل روش ذوب فلزات و سرد کردن آنها در قالب، چنین امکانی را فراهم نمی‌کنند. پس چگونه می‌توان چنین ساختارهایی را به وجود آورد؟ این مقاله می‌خواهد به همین سؤال پاسخ بگوید. فرض کنید تعدادی آجر خانه‌سازی دارید و می‌خواهید با آن چیزی ...

سابقه و هدف : نانو فناوری یکی از جدید ترین علومی است که در سه شاخه مرطوب ، خشک و محاسبه ای اینده زندگی بشر را دگرگون خواهد ساخت . یکی از مهمترین زمینه های تاثیر گذاری نانو فناوری در زندگی انسان ، علم غذا است که به دلیل احتیاج روزمره و دائمی انسان به غذا هر گونه تغییر و تحو لی در ان نقش به سزایی در تغییر کیفیت زندگی انسان خواهد داشت . لذا به منظور تبیین جایگاه نانو فناوری و نانو ...

هدف و سابقه: نانو فناوری یکی از جدید ترین علومی است که در سه شاخه مرطوب ، خشک و محاسبه ای اینده زندگی بشر را دگرگون خواهد ساخت . یکی از مهمترین زمینه های تاثیر گذاری نانو فناوری در زندگی انسان ، علم غذا است که به دلیل احتیاج روزمره و دائمی انسان به غذا هر گونه تغییر و تحو لی در ان نقش به سزایی در تغییر کیفیت زندگی انسان خواهد داشت . لذا به منظور تبیین جایگاه نانو فناوری و نانو ...

تاریخچه فناوری نانو در طول تاریخ بشر از زمان یونان باستان، مردم و به‌خصوص دانشمندان آن دوره بر این باور بودند که مواد را می‌توان آنقدر به اجزاء کوچک تقسیم کرد تا به ذراتی رسید که خردناشدنی هستند و این ذرات بنیان مواد را تشکیل می‌دهند، شاید بتوان دموکریتوس فیلسوف یونانی را پدر فناوری و علوم نانو دانست چرا که در حدود 400 سال قبل از میلاد مسیح او اولین کسی بود که واژه اتم را که به ...

نانو تکنولوژی، فناوری نوین نانو تکنولوژی فناوری جدیدی است که تمام دنیا را فراگرفته است و به تعبیر دقیقتر "نانو تکنولوژی بخشی از آینده نیست بلکه همه آینده است ".در این مقاله بعد از تعریف نانو به بیان دلایل کاربرد ها و ضرورتهای توجه به این فناوری اشاره شده است . تعریف نانو تکنولوژی نانو تکنولوژی،توانمندی تولید مواد،ابزار ها و سیستمهای جدید با در دست گرفتن کنترل در سطح مولکولی و ...

نانو تکنولوژی یعنی فناوری یک میلیاردم متر یا تکنولوژی اتمها . در زبان یونانی نانو بمعنای کوتوله و معادل یک میلیاردم می باشد یعنی 50000 بار نازکتر از ضخامت یک تار مو یعنی اندازه چندین اتم. اگر انسان به این اندازه بزرگ شود 2 میلیون کیلومتر طول قد او می شد یعنی به اندازه 5 برابر فاصله ماه تا زمین. قطعات الکترونیکی هر روز کوچکتر می شوند . ما از لامپهای رادیوهای پدربزرگهامان به اجزای ...

ثبت سفارش
تعداد
عنوان محصول