دانلود تحقیق فیثاغورث

Word 84 KB 19950 8
مشخص نشده مشخص نشده مشاهیر و بزرگان
قیمت قدیم:۱۲,۰۰۰ تومان
قیمت: ۷,۶۰۰ تومان
دانلود فایل
کلمات کلیدی: فیثاغورث
  • بخشی از محتوا
  • وضعیت فهرست و منابع
  • فیثاغورث (حدود سال های 580 تا 500 پیش از میلاد ) ، ریاضی دان و فیلثوف یونان باستان ، در ساموس متولد شد .

    در جوانی ، برای مطالعه ی دانش کاهنان مصری ، به آن سرزمین سفر کرد .

    او در بابل هم بود و در آنجا ، در طول 12 سال ، توانست اختر شماری (تنجیم) و اختر شناسی (نجوم) کاهنان بابلی را فرا گیرد .

    بعد از بابل ، به جنوب ایتالیا و سپس سیسیل رفت و در آنجا مکتب فیثاغوری را بنیان گذاشت که سهم پر ارزشی در پیشرفت ریاضیات و اخترشناسی داشت .

    فیثاغورث و شاگردان او ، به هندسه چهره ی علمی دادند .

    به جز قضیه ای که به نام او مشهور است ، اثبات قضیه ی مربوط به مجموع زاویه های مثلث ، مساله ی مربوط به پوشش ها – یعنی تقسیم صفحه به چند ضلعی های منتظم - ،حل هندسی معادله ی درجه دوم و طریقه ی ساختن شکلی که با شکل مفروض متشابه و با شکل مفروض دیگر هم ارز باشد ، نیز به فیثاغورث منسوب است .
    در مکتب فیثاغوری ، عرفان عددی رشد زیادی کرد .

    قبول نسبت های کمی ، به عنوان ماهیت همه ی چیز ها ، و جدا شدن از واقعیت های عینی و مادی ، این مکتب را به سمت ذهن گرایی سوق داد .

    فیثاغورث می آموخت که ، معیار هر چیز مادی و غیر مادی ، عبارت است از عدد و بستگی هایی که بین عدد ها وجود دارد .

    به اعتقاد فیثاغورث ، حتی مفهوم های به کلی دور از ریاضیات، همچون « دوستی » ، « درستی » ، « شادی » و غیره ، را می توان به یاری بستگی های عددی روشن کرد .

    او معتقد بود که ، این مفهوم ها ، چیزی جز شکل و یا نمونه ی این بستگی ها نیستند و به یاری عدد می توان همه ی خصلت های پنهانی را روشن کرد : عددی نماینده ی نیکی ، دیگری معرف بدی ، سومی معرف کامیابی و غیره .

    فیثاغورث اعتقاد داشت که روح هم چیزی جز عدد نیست ، جاودان است و از یک انسان به انسانی دیگر منتقل می شود .
    عرفان عددی فیثاغورث و دنبال کنندگان این راه ، لطمه های زیادی به پیشرفت دانش ریاضی وارد آوردند .

    افکار فیثاغورث ریاضیدان و فیلسوف یونانی به شکل گیری ریاضیات نوین و فلسفه غرب کمک کرده است .

    هدف او توضیح همه پدیده های طبیعی بر اساس ریاضیات بود .

    فیثاغورث بیش از هر چیز برای فرمولی که در مورد نسبتهای اضلاع مثلث راست گوشه ارائه کرده است معروف است.

    مفاهیم متعدد دیگری (مانند تصاعدهای حسابی و هندسی و عددهای مربع کامل ) که برای ریاضیات نوین نقش زیر بنایی دارند بر افکار فیثاغورث مبتنی هستند .

    فیثاغورث و پیروان او ریاضیات هماهنگ ها را که مبنای موسیقی امروز غرب را تشکیل می دهد ابداع کردند.


    حدود 580ق.م فیثاغورث در ساموس یونان به دنیا می آید.

    حدود 532 ق.م برای فرار از حکومت جابر ساموس به جنوب ایتالیا سفر می کند.

    حدود 525 ق.م یک آکادمی را در کروتون (که اکنون کروتونا نام دارد) تاسیس می کند .

    این آکادمی یک مدرسه و یک مکتب برادری مذهبی مبتنی بر اصول اخلاقی و فلسفی معینی است ، که در آن همه برادران می بایستی وفاداری و رازداری را رعایت کنند .

    در ریاضیات ،فیثاغورث و پیروان او با آرایشهای مختلف دسته هایی از ریگ آزمایش می کنند و در می یابند که دنباله های منظمی از اعداد پدید می آید.

    مثلاَ شکلهای مثلثی دنباله 10،6،3،1،...

    و شکلهای مربعی دنباله 16،9،4،1،...

    را ایجاد می کنند.

    کلمه calculate به معنی محاسبه (از calculus به معنی «سنگریزه» و نیز اصطلاح مربع (توان دوم) از این کاربرد ریگها اقتباس شده است .

    در هندسه ، آنها در می یابند که مجموع زوایای یک مثلث همیشه 180 درجه است.

    آنها همچنین این قضیه معروف را ارائه می کنند که مربع وتر یک مثلث راست گوشه برابر مجموع مربهای دو ضلع دیگر ان است .

    در موسیقی ، فیثاغورث و پیروان او با آزمایش بر روی تارهای کشیده شده ریاضیات اکتاوها را ابداع می کنند (هرگاه طول تاری را نصف کنیم ، نتی را که یک اکتاو پایینتر است ایجاد می کند،) در اخترشناسی ، آنها این نظریه را مطرح می کنند که جهان کروی است و زمین نیز کره ای در مرکز آن است.

    خورشید به طور سالانه و روزانه به دور آسمان می چرخد ، و ماه و سیاره ها نیز به همین ترتیب رفتار می کنند.

    فیثاغورث در آسیای صغیر (ترکیه امروز) به سفرهای وسیعی می پردازد و در آنها با بعضی از ریاضیدانان و فیلسوفان برجسته ان زمان تبادل نظر می کند.

    حدود 500ق.م در متاپونتوم (نزدیکی متاپونتوی امروز) در ایتالیا می میرد.

    قضیه د رمثلث قائم‌الزاویه ABC که زاویه A در آن قائمه است ، در صفحه رابطه‌ی زیر همیشه بین اضلاع برقرار است: می‌توان این قضیه را به صورت ساده‌تر بیان کرد : فرض کنید سه مربع روی اضلاع یک مثلث قائم الزاویه،که طول اضلاع قائم آن a وb و طول وتر آن c میباشد؛مطابق شکل زیر می‌سازیم این قضیه به ما توضیح می‌دهد که جمع مساحتهای دو مربع ساخته شده روی دو ضلع قائم یک مثلث قائم الزاویه با مساحت مربع ساخته شده روی وتر برابر است.

    مثلث قائم الزاویه مثلثی است که دارای یک زاویه قائم می‌باشد و به ضلعی که روبروی این زاویه در مثلث قرار دارد، وتر می‌گویند.

    در شکل اضلاع زاویه قائم با aوb و وتر با c نشان داده شده است.

    بیان دیگر قضیه به این صورت است که در یک مثلث قائم الزاویه مجموع مربعات دو ضلع قائم با مجذور وتر برابر است.

    جالب است بدانید که بیش از شصت روش هندسی برای اثبات این قضیه وجود دارد.

    اثبات قضیه می توان با توجه به شکل روبرو اثبات هندسی قضیه را به راحتی درک کرد.

    در هر دو شکل مربعی به ضلع a+b داریم.در شکل سمت راست چهار نمونه از مثلث قائم الزاویه دور مربع ساخته شده بروی وتر وجود دارد.

    و هر چهار مثلث دارای مساحت یکسان می باشند.

    با چند جابجایی در شکل سمت راست به شکل سمت چپ می‌رسیم.در این شکل همان چهار مثلث قبلی وجود دارند ولی مربعی که اضلاع آن به c بود به دو مربع به اضلاع a,b تبدیل شده است، که همان قضیه فیثاغورث را نشان می‌دهد شکل روبرو نیز نشان دهنده روش دیگری از اثبات هندسی می باشد: قضیه فیثاغورس در هندسه اقلیدسی رابطه‌ای بین اندازه سه ضلع هر مثلث راست‌گوشه است.

    این قضیه می‎گوید: در هر مثلث راست‌گوشه مساحت مربعی که یک ضلعش وتر این مثلث باشد برابر با مجموع مساحت‌های مربع‌های ضلع‌های دیگر این مثلث است.

    a2 + b2 = c2

فیثاغورث در حدود سال 580 پیش از میلاد، در جزیره ساموس متولد شد. اقامت در مصر اثر فوق العاده ای در پیشرفت فیثاغورث داشت. فیثاغورث در نخستین دوره شکوفایی خود در کروتون (مستعمره یونانی در جنوب ایتالیا) زندگی می کرد. او در همین جا مکتب فیثاغورثی را بنیان گذاشت که در پیشرفت ریاضیات یونانی اثر فوقالعاده داشت. فیثاغورث اساس ساختمانی جهان هستی را عدد (و به تعبیر امروز عدد طبیعی) می ...

افکار فیثاغورث ریاضیدان و فیلسوف یونانی به شکل گیری ریاضیات نوین و فلسفه غرب کمک کرده است . هدف او توضیح همه پدیده های طبیعی بر اساس ریاضیات بود . فیثاغورث بیش از هر چیز برای فرمولی که در مورد نسبتهای اضلاع مثلث راست گوشه ارائه کرده است معروف است. مفاهیم متعدد دیگری (مانند تصاعدهای حسابی و هندسی و عددهای مربع کامل ) که برای ریاضیات نوین نقش زیر بنایی دارند بر افکار فیثاغورث ...

فیثاغورث حوالی سال 570 ق.م در ساموس زندگی خویش را آغازید.محضر اساتیدی چون طالس و آناکسیمندروس را درک نمود.او مردی دنیا دیده بود و چندین سال در سفر،بخصوص در مصر و بابل بود.در نهایت به کروتون رفت و در آنجا به تدریس پرداخت و انجمن عظیم تاریخی خود را به راه انداخت.بسیاری وی را پیشوا و پدر فلسفه الهی خوانده اند. چرا مکتب فیثاغورث را بررسی می کنیم؟ فیثاغورثیان قائل به حصول معرفت علمی ...

ریاضیات و بند کفش « آیا هیچ گاه از خود پرسیده اید که چه کسی یک ریاضیدان است؟ چندین سال پیش حرفه ای برای این پرسش در ذهن من ایجاد شد و به نظرم رسید که ریاضیدان شخصی است که قدرت تشخیص فرصتهای موجود برای به کار گیری ریاضیات را دارد و این در حالی است ک بقیه افراد متوجه این فرصتها نیستند. در این مورد می توان بند کفش را در نظر گرفت آقای جان هاتسون استاد علوم کامپیوتر دانشگاه ...

ریاضیات همواره یکی از علوم فعال و زنده بوده است که براساس منطق استوار می باشد .پایگاه معرفت ریاضی خرد محض است و بر محور احساسات و خواسته ها نمی گردد .میزانی که با آن اندیشه های ریاضی را می سنجیم مستقل از آن اندیشه هاست . نتایج همگی بر مبنای قوانین و اندیشه های که بر حسب معیارهای قانونی ریاضیات ثابت شده است .ریاضیات همچنین نمادی از تلاش بی پایان انسانها برای کسب دانش و آگاهی است ...

جی . رابرت . اوپنهایمر در کتاب علم و فرزانگی در رابطه با سرگذشت کوانتوم چنین می گوید : « شاید هرگز تمامی تاریخ این حادثه روایت نشود . برای عرضه کردن آن هنری به آن اندازه توانا لازم است که برای روایت کردن سرگذشت اودیپوس یا کرامول ضرورت داشته است ، ولی این حادثه در قلمروی چندان دور از تجربه های روزانه ی ما صورت پذیرفته است که کم تر احتمال آن می رود که شاعر یا مورخی از آن با خبر ...

تاریخچه هندسه واژه انگلیسی Geometry ( هندسه ) از زبان یونانی ریشه گرفته است. این کلمه از دو کلمه «جئو»ٍ به معنای زمین و «متری» به معنای اندازه گیری تشکیل شده است.بنابراین هندسه اندازه گیری زمین است. مصریان اولیه نخستین کسانی بودند که اصول هندسه را کشف کردند. هر سال رودخانه نیل طغیان نموده و نواحی اطراف رودخانه راسیل فرا می‌گرفت. این عمل تمام علایم مرزی میان ...

رفتار برشی پارچه های تاری – پودی 1-1- تغییر شکلهای پیچیده پارچه و معرفی پدیده برش پارچه های نساجی در هنگام استفاده و کاربردهای عملی ، تحت یکسری تغییرشکلهای پیچیده قرار می گیرند که این تغییر شکلها افت پارچه ( Drape) ، زیر دست پارچه (Handle ) ، چروک شدن (Winkle ) یا تا خوردگی (Crease) و دیگر اثراتی که مرتبط با زیبایی پارچه است می باشد واضح است که مصرف کنندگان پارچه ها ، بازرگانان ...

مراحل پیدایش دانش ریاضی در این قسمت می خواهم در ارتباط با تاریخ ریاضییات مطالبی را بنویسم .که مطالب درج شده در این قسمت بر گرفته از کتاب تاریخ ریاضیات است. مراحل پیدایش دانش ریاضی ریاضیات طی چهار مرحله به وجود آمده است . مرحله اول : مرحله اول مربوط به پیدایش آن در بابل است .یونانیان بعدهای طی تماس های روز افزانشان با بابلی ها که بعد از لشکر کشی های اسکندر به حد اعلاء خود رسیده ...

آغازها در اروپای غربی بخش شرقی امپراطوری روم همواره، چه از لحاظ اقتصادی و چه از نظر فرهنگی، پیشرفته ترین بخش آن امپراطوری بود. اقتصاد بخش غربی هرگز بر اساس آبیاری استوار نبود، کشاورزی بخش غربی به گونه ای گسترده بود که انگیزه ای برای مطالعه نجوم فراهم نمی آورد. در واقع غرب با اندکی نجوم، کمی حساب عملی، و کمی دانش اندازه گیری که تکافوی تجارت و مساحی را می کرد، از عهده کارهای خود ...

ثبت سفارش
تعداد
عنوان محصول